グラフとネットワーク(第10回)

http://coconut.sys.eng.shizuoka.ac.jp/gn/08/

安藤和敏 (静岡大学工学部)

2008.12.04

2.1. 木と道

2.1.1. 最短路問題 (ダイクストラ法)

有向グラフ G=(V,A) 上の各枝 $a\in A$ に対して、その長さ l(a) を指定する枝長関数 $l:A\to\mathbb{R}$ が与えられているとする.このようなネットワークを $\mathcal{N}=(G=(V,A),l)$ と書くことにする.

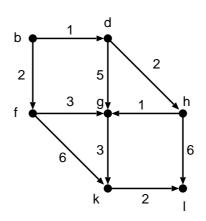
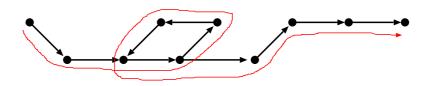


図 2.1: Gと l



Gの中の有向道

$$P = (v_0, a_1, v_1, a_2, v_2, a_3, \cdots, a_k, v_k)$$

に対して、 $\sum_{i=1}^k l(a_i)$ を P の長さと呼ぶ. 最短路問題 (shortest path problem) とは、与えられた 2 点 $u,v \in V$ に対して、u から v への長さが最小の有向道を見出す問題である. 点集合上で定義される関数 $p:V \to \mathbb{R}$ をポテンシャル (potential) と呼ぶ.

補題 2.1: 任意なポテンシャル $p: V \to \mathbb{R}$ に対し, 関数 $l_p: A \to \mathbb{R}$ を

$$l_p(a) = l(a) + p(\partial^+ a) - p(\partial^- a)$$
(2.11)

によって定義する. \mathcal{N} の中の点uからvへの任意な有向道Pに対して, 関数lと l_p に関するPの長さをそれぞれl(P)と $l_p(P)$ とすると,

$$l_p(P) = l(P) + p(u) - p(v)$$
(2.12)

が成り立つ.□

補題 2.2: P を点u から点v への有向道とする. もし, あるポテンシャルp: $V \to \mathbb{R}$ が存在して, (2.1) で定義される l_p が

- (i) グラフGの全ての枝 $a \in A$ に対して $l_p(a) \ge 0$, かつ,
- (ii) P上の全ての枝 a に対して, $l_p(a) = 0$

を満足するならば、Pは点uから点vへの最短路である. \square

すべての枝の長さが非負、すなわち、 $l(a) \ge 0$ $(a \in A)$ 、であるときに使える解法として**ダイクストラ法** が有名である. これは、与えられた 1 点から残りのすべての点への最短路を求める.

Algorithm 1 ダイクストラ法 (始点を v_0 とする)

入力: 単純な有向グラフ G = (V, A), 枝長関数 $l: A \to \mathbb{R}_+$.

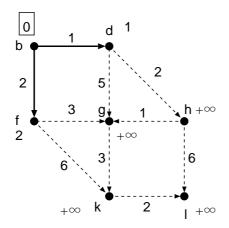
出力: v_0 からその他の各点vへの最短路,及び,最短路長.

- 1: $U \leftarrow \{v_0\}, \ W \leftarrow \emptyset, \ p(v_0) \leftarrow 0, \ p(u) \leftarrow +\infty \ (u \in V \setminus \{v_0\}).$
- $2: U = \emptyset$ ならば停止.

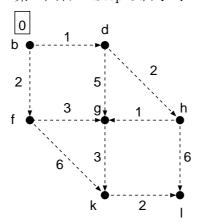
そうでなければ, U の点のなかで p の値が最小であるものを 1 つ選び, それを w とする. 点 w から出る枝 a=(w,x) で $x \not\in W$ であるような各枝に対して, 以下の (*) を実行する.

- (*) p(x) > p(w) + l(w, x) ならば $q(x) \leftarrow a, \ p(x) \leftarrow p(w) + l(w, x),$ $U \leftarrow U \cup \{x\}.$

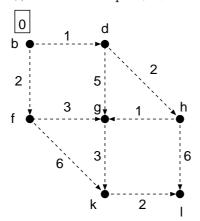
図 2.1 で示されるグラフ G と枝長関数 l を例題として, アルゴリズムの動作を見てみよう. ここで, $v_0 = b$ とする.



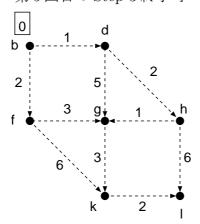
第1回目のStep 3終了時



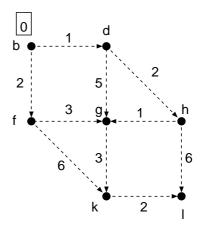
第3回目のStep 3終了時



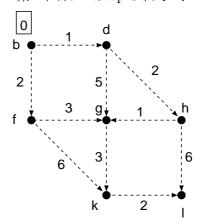
第5回目のStep 3終了時



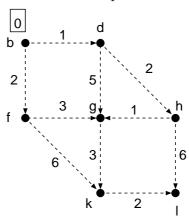
第7回目のStep 3終了時



第2回目のStep 3終了時



第4回目のStep 3終了時



第6回目のStep 3終了時