Rockafellar and Wets: Variational Analysis

Kazutoshi Ando

2000.10.4

3.B: Horizon Cones

Exercise (3.4): $C \cup \operatorname{dir} K \subseteq \operatorname{csm} \mathbb{R}^n$ is closed if and only if C and K are closed in \mathbb{R}^n and $C^{\infty} \subseteq K$. In general, its cosmic closure is

$$\operatorname{csm}(C \cup \operatorname{dir} K) = \operatorname{cl} C \cup \operatorname{dir}(C^{\infty} \cup \operatorname{cl} K).$$

(Proof) (\subseteq) Let us consider a converging sequence $\{\tilde{x}^{\nu}\}\subseteq C\cup \operatorname{dir} K$ with $\tilde{x}^{\nu}\to \bar{x}\in\operatorname{csm}\mathbb{R}^n$. If $\bar{x}\in\mathbb{R}^n$, then for all but finite ν we have $\bar{x}^{\nu}\in C$, and hence, we have $\bar{x}\in\operatorname{cl} C$. If $\bar{x}\in\operatorname{hzn}\mathbb{R}^n$, then for some $x\neq 0$ we have $\bar{x}=\operatorname{dir} x$. Define

$$N_1 = \{ \nu \mid \tilde{x}^{\nu} \in C \}$$

and

$$N_0 = \{ \nu \mid \nu \in N, \tilde{x}^{\nu} \in \operatorname{dir} K \}.$$

[Case: N_1 is infinite] Then, by definition, we have

$$\exists \lambda^{\nu} \searrow 0 : \lambda^{\nu} x^{\nu} \to x,$$

and hence, $x \in C^{\infty}$. Therefore, $\bar{x} = \operatorname{dir} x \in \operatorname{dir} C^{\infty}$.

[Case: N_0 is infinite] Then, by difinition, for each $\nu \in N_0$ there exists $x^{\nu} \in K$ such that $\bar{x}^{\nu} = \text{dir } x^{\nu}$ and we have

$$\exists \lambda^{\nu} > 0 : \lambda^{\nu} x^{\nu} \to x.$$

Therefore, $x \in \operatorname{cl} K$, and hence, $\bar{x} = \operatorname{dir} x \in \operatorname{dir} \operatorname{cl} K$.

(\supseteq) Suppose $\bar{x} \in \operatorname{cl} C \cup \operatorname{dir} (C^{\infty} \cup \operatorname{cl} K)$. If $\bar{x} \in \operatorname{cl} C$, then \bar{x} is the limit point of a sequence in C. Therefore, $x \in \operatorname{csm} (C \cup \operatorname{dir} K)$.

Suppose $\bar{x} \in \text{dir } (C^{\infty} \cup \text{cl } K)$. Then, there exists $x \neq 0$ such that $\bar{x} = \text{dir } x$.

[Case: $x \in C^{\infty}$] We have

$$\exists \lambda^{\nu} \searrow 0: \lambda^{\nu} x^{\nu} \rightarrow x,$$

and hence, $x^{\nu} \to \operatorname{dir} x = \bar{x}$. Therefore, $\bar{x} \in \operatorname{csm} C$.

[Case: $x \in \operatorname{cl} K$] Then, there exists a sequence $\{x^{\nu}\}$ in K converging to x. This means

$$\operatorname{dir} x^{\nu} \in \operatorname{dir} K \ (\nu \in \mathbb{N}), \operatorname{dir} x^{\nu} \to \operatorname{dir} x,$$

and hence, $\bar{x} = \operatorname{dir} x \in \operatorname{csm} \operatorname{dir} K$.

Proposition: For a general subset of csm \mathbb{R}^n , written as $C \cup \text{dir } K$ for a set $C \subseteq \mathbb{R}^n$ and a cone $K \subseteq \mathbb{R}^n$, let

$$\mathcal{G}(C,K) = \left\{ \lambda \left[\begin{array}{c} x \\ -1 \end{array} \right] \ | \ x \in C, \lambda > 0 \right\} \cup \left\{ \left[\begin{array}{c} x \\ 0 \end{array} \right] \ | \ x \in K \right\}.$$

 $C \cup \operatorname{dir} K$ is cosmically closed if and only if $\mathcal{G}(C,K)$ is closed.

(Proof) ("if" part:) Suppose that $\mathcal{G}(C,K)$ is closed. Then, it is obvious (?) that C and K are closed. It suffices to show that $C^{\infty} \subseteq K$.

Let $x \in C^{\infty}$. We have

$$\exists x^{\nu} \in C, \exists \lambda^{\nu} \setminus 0: \lambda^{\nu} x^{\nu} \to x.$$

Therefore, we have

$$\lambda^{\nu} \left[\begin{array}{c} x^{\nu} \\ -1 \end{array} \right] \in \mathcal{G}(C,K), \lambda^{\nu} \left[\begin{array}{c} x^{\nu} \\ -1 \end{array} \right] \rightarrow \left[\begin{array}{c} x \\ 0 \end{array} \right].$$

Since $\mathcal{G}(C,K)$ is closed, we must have $\left[\begin{array}{c} x \\ 0 \end{array}\right] \in \mathcal{G}(C,K),$ and hence, $x \in K.$

("only if" part:) Suppose that $\operatorname{csm}(C \cup \operatorname{dir} K)$ is closed. Let us consider a sequence

$$\left[\begin{array}{c} x^{\nu} \\ -\gamma^{\nu} \end{array}\right] \in \mathcal{G}(C,K) \text{ with } \left[\begin{array}{c} x^{\nu} \\ -\gamma^{\nu} \end{array}\right] \rightarrow \left[\begin{array}{c} x \\ -\gamma \end{array}\right].$$

[Case: $\gamma > 0$] Then, we have for all but finite ν that $\gamma^{\nu} > 0$. Therefore,

$$\frac{x^{\nu}}{\gamma^{\nu}} \in C, \frac{x^{\nu}}{\gamma^{\nu}} \to \frac{x}{\gamma}.$$

Since C is closed, we have $\frac{x}{\gamma} \in C$. It follows that $\begin{bmatrix} x \\ -\gamma \end{bmatrix} \in \mathcal{G}(C,K)$. [Case: $\gamma = 0$] If for infinitely many ν we have $\gamma^{\nu} > 0$, we have

$$\frac{x^{\nu}}{\gamma^{\nu}} \in C, \ \gamma^{\nu} \searrow 0, \ \gamma^{\nu} \frac{x^{\nu}}{\gamma^{\nu}} \to x.$$

Therefore, $x \in C^{\infty}$. Then, we have $x \in K$ since csm $(C \cup \operatorname{dir} K)$ is closed. Hence, we have $\begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{G}(C,K)$.

If for infinitely many ν we have $\gamma^{\nu} = 0$, then we have

$$x^{\nu} \in K, x^{\nu} \to x.$$

It follows from the closedness of K that $x \in K$, and hence, $\begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{G}(C, K)$. \square

3.F: Cosmic Convexity

Exercise (3.44): For a general subset of csm \mathbb{R}^n , written as $C \cup \operatorname{dir} K$ for a set $C \subseteq \mathbb{R}^n$ and a cone $K \subseteq \mathbb{R}^n$, one has

$$con (C \cup dir K) = (con C + con K) \cup dir (con K).$$

(Proof) For $C \cup \operatorname{dir} K \subseteq \operatorname{csm} \mathbb{R}^n$ define

$$\mathcal{G}(C,K) = \left\{ \lambda \left[\begin{array}{c} x \\ -1 \end{array} \right] \mid x \in C, \lambda > 0 \right\} \cup \left\{ \left[\begin{array}{c} x \\ 0 \end{array} \right] \mid x \in K \right\}.$$

If we can show that

$$\mathcal{G}(\operatorname{con} C + \operatorname{con} K, \operatorname{con} K) = \operatorname{con} \mathcal{G}(C, K),$$

it will follow that for any convex subset $C' \cup \operatorname{dir} K'$ such that $C \subseteq C'$ and $K \subseteq K'$, we have $\mathcal{G}(C, K) \subseteq \mathcal{G}(C', K')$ since $\mathcal{G}(C', K')$ is concex due to 3.42. Therefore, we have

$$\mathcal{G}(\operatorname{con} C + \operatorname{con} K, \operatorname{con} K) = \operatorname{con} \mathcal{G}(C, K) \subset \mathcal{G}(C', K'),$$

and hence, con $C + \operatorname{con} K \subseteq C'$, con $K \subseteq K'$.

Now, let us show that

$$\mathcal{G}(\operatorname{con} C + \operatorname{con} K, \operatorname{con} K) = \operatorname{con} \mathcal{G}(C, K).$$

Let

$$\left[\begin{array}{c} x \\ -\xi \end{array}\right] \in \operatorname{con} \mathcal{G}(C, K).$$

Then, we have

$$\exists \begin{bmatrix} x_1 \\ -\xi_1 \end{bmatrix}, \cdots, \begin{bmatrix} x_k \\ -\xi_k \end{bmatrix}, \begin{bmatrix} y_1 \\ 0 \end{bmatrix}, \cdots, \begin{bmatrix} y_l \\ 0 \end{bmatrix} \in \mathcal{G}(C, K) \text{ with } \xi_i > 0 \ (i = 1, \cdots, k),$$

2000.10.4 3

and

$$\exists \lambda_1, \dots, \lambda_k, \mu_1, \dots, \mu_l \geq 0 \text{ with } \sum_{i=1}^k \lambda_i + \sum_{j=1}^l \mu_j = 1$$

such that

$$\begin{bmatrix} x \\ -\xi \end{bmatrix} = \lambda_1 \begin{bmatrix} x_1 \\ -\xi_1 \end{bmatrix} + \dots + \lambda_k \begin{bmatrix} x_k \\ -\xi_k \end{bmatrix} + \mu_1 \begin{bmatrix} y_1 \\ 0 \end{bmatrix} + \dots + \mu_l \begin{bmatrix} y_l \\ 0 \end{bmatrix}$$

[Case 1:] k = 0 (or $\xi = 0$)

$$\left[\begin{array}{c} x \\ -\xi \end{array}\right] = \mu_1 \left[\begin{array}{c} y_1 \\ 0 \end{array}\right] + \dots + \mu_l \left[\begin{array}{c} y_l \\ 0 \end{array}\right] = \left[\begin{array}{c} \mu_1 y_l + \dots + \mu_l y_l \\ 0 \end{array}\right],$$

where $\mu_1 y_l + \cdots + \mu_l y_l \in \text{con } K$. Hence

$$\begin{bmatrix} x \\ -\xi \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} \in \mathcal{G}(\operatorname{con} C + \operatorname{con} K, \operatorname{con} K).$$

[Case 2:] k>0 (or $\xi>0$). Since we have $\frac{x_i}{\xi_i}\in C$ $(i=1,\cdots,k)$ and $y_j\in K$ $(j=1,\cdots,l)$, noting that

$$\xi = \lambda_1 \xi_1 + \dots + \lambda_k \xi_k$$

we have

$$\frac{x}{\xi} = \frac{\lambda_1 \xi_1}{\xi} \cdot \frac{x_1}{\xi_1} + \dots + \frac{\lambda_k \xi_k}{\xi} \cdot \frac{x_k}{\xi_k} + \mu_1 y_1 + \dots + \mu_l y_l \in \text{con } C + \text{con } K.$$

Therefore, we have

$$\left[\begin{array}{c} x \\ -\xi \end{array}\right] = \xi \left[\begin{array}{c} \frac{x}{\xi} \\ -1 \end{array}\right] \in \mathcal{G}(\operatorname{con} C + \operatorname{con} K, \operatorname{con} K),$$

and hence, inclusion con $\mathcal{G}(C,K) \subseteq \mathcal{G}(\text{con } C + \text{con } K, \text{con } K)$ was now shown.

Conversely, suppose that $\begin{bmatrix} x \\ -\xi \end{bmatrix} \in \mathcal{G}(\operatorname{con} C + \operatorname{con} K, \operatorname{con} K)$.

[Case 1:] $\xi = 0$.

In this case, since $x \in \text{con } K$, we have

$$\exists y_1, \cdots, y_l \in K : x = y_1 + \cdots + y_l.$$

Therefore.

$$\left[\begin{array}{c} x \\ 0 \end{array}\right] = \left[\begin{array}{c} y_1 \\ 0 \end{array}\right] + \dots + \left[\begin{array}{c} y_l \\ 0 \end{array}\right] \in \operatorname{con} \mathcal{G}(C, K).$$

[Case 2:] $\xi > 0$.

Since $\frac{x}{\xi} \in \text{con } C + \text{con } K$,

$$\exists \lambda_1, \dots, \lambda_k > 0 \text{ with } \sum_{i=1}^k = 1 \text{: and } x_i \in C \ (i = 1, \dots, k), \ y_j \in K \ (j = 1, \dots, l)$$

such that

$$\frac{x}{\xi} = \lambda_1 x_1 + \dots + \lambda_k x_k + y_1 + \dots + y_l.$$

Then, we have

$$\begin{bmatrix} x \\ \xi \end{bmatrix} = \xi \begin{bmatrix} \frac{x}{\xi} \\ -1 \end{bmatrix}$$

$$= \xi \left(\lambda_1 \begin{bmatrix} x_1 \\ -1 \end{bmatrix} + \dots + \lambda_k \begin{bmatrix} x_k \\ -1 \end{bmatrix} + \begin{bmatrix} y_1 \\ 0 \end{bmatrix} + \dots + \begin{bmatrix} y_l \\ 0 \end{bmatrix} \right)$$

$$= \xi \lambda_1 \begin{bmatrix} x_1 \\ -1 \end{bmatrix} + \dots + \xi \lambda_k \begin{bmatrix} x_k \\ -1 \end{bmatrix} + \xi \begin{bmatrix} y_1 \\ 0 \end{bmatrix} + \dots + \xi \begin{bmatrix} y_l \\ 0 \end{bmatrix}$$

$$\in \operatorname{con} \mathcal{G}(C, K).$$

Exercise (3.42): $C \cup \operatorname{dir} K \subseteq \operatorname{csm} \mathbb{R}^n$ is convex if and only if

$$\mathcal{G}(C,K) = \left\{ \lambda \left[\begin{array}{c} x \\ -1 \end{array} \right] \mid x \in C, \lambda > 0 \right\} \cup \left\{ \left[\begin{array}{c} y \\ 0 \end{array} \right] \mid x \in K \right\}$$

is convex.

(Proof) Suppose $C \cup \operatorname{dir} K$ is convex. Then, by the definitions, C and K are convex and $C + K \subseteq C$. Let $y_1, y_2 \in \mathcal{G}(C, K)$.

[Case 1:]
$$z_i = \lambda_i \begin{bmatrix} x_i \\ -1 \end{bmatrix}$$
 for some $x_i \in C$ and $\lambda_i > 0$ $(i = 1, 2)$.

We have

$$z_1 + z_2 = \lambda_1 \begin{bmatrix} x_1 \\ -1 \end{bmatrix} + \lambda_2 \begin{bmatrix} x_2 \\ -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 + \lambda_2 x_2 \\ -\lambda_1 - \lambda_2 \end{bmatrix} = (\lambda_1 + \lambda_2) \begin{bmatrix} \frac{\lambda_1}{\lambda_1 + \lambda_2} x_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2} x_2 \\ -1 \end{bmatrix} \in \mathcal{G}(C, K)$$

by the convexty of C.

[Case 2:]
$$z_1 = \lambda \begin{bmatrix} x \\ -1 \end{bmatrix}$$
 for some $x \in C$ and $\lambda > 0$. $z_2 = \begin{bmatrix} y \\ 0 \end{bmatrix}$ for some $y \in K$.

We have

$$z_1 + z_2 = \lambda \begin{bmatrix} x \\ -1 \end{bmatrix} + \begin{bmatrix} y \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} x + \frac{y}{\lambda} \\ -1 \end{bmatrix} \in \mathcal{G}(C, K)$$

by $C + K \subseteq C$.

[Case 3:]
$$z_i = \begin{bmatrix} y_i \\ 0 \end{bmatrix}$$
 for some $y_i \in K \ (i = 1, 2)$.

We have

$$z_1 + z_2 = \begin{bmatrix} y_1 \\ 0 \end{bmatrix} + \begin{bmatrix} y_2 \\ 0 \end{bmatrix} = \begin{bmatrix} y_1 + y_2 \\ 0 \end{bmatrix} \in \mathcal{G}(C, K)$$

by the convexity of K. Therefore, $\mathcal{G}(C,K)$ is convex.

Conversely, suppose that $\mathcal{G}(C,K)$ is convex. Then, it is obvious that C and K are convex. We will show that $C+K\subseteq C$. Let $x\in C$ and $y\in K$. Then, by the convexity of $\mathcal{G}(C,K)$, we have

$$\left[\begin{array}{c} x+y \\ -1 \end{array}\right] = \left[\begin{array}{c} x \\ -1 \end{array}\right] + \left[\begin{array}{c} y \\ 0 \end{array}\right] \in \mathcal{G}(C,K).$$

Hence, $x + y \in C$. \square

4.F: Horizon Limit

Exercise (4.20'): We have

- (i) $\limsup_{\nu} (C^{\nu} \cup \operatorname{dir} K^{\nu}) = (\limsup_{\nu} C^{\nu}) \cup \operatorname{dir} (\limsup_{\nu} C^{\nu} \cup \limsup_{\nu} K^{\nu}),$
- (ii) $\liminf_{\nu} (C^{\nu} \cup \dim K^{\nu}) \supseteq (\liminf_{\nu} C^{\nu}) \cup \dim \inf_{\nu} C^{\nu} \cup \liminf_{\nu} K^{\nu}).$

If $K^{\nu} = \{0\} \ (\nu \in N)$, we have equality in (ii).

(Proof) (i) Suppose $\bar{x} \in \limsup_{\nu} (C^{\nu} \cup \operatorname{dir} K^{\nu})$. Then,

$$\exists N \in \mathcal{N}_{\infty}^{\#}, \exists x^{\nu} \in C^{\nu} \cup \operatorname{dir} K^{\nu} \ (\nu \in N) : x^{\nu} \xrightarrow{N} \bar{x}.$$

[Case I: $\bar{x} \in \mathbb{R}^n$.] In this case, for a sufficiently large ν_0 we have $\nu \geq \nu_0, \nu \in N$ implies $x^{\nu} \in C^{\nu}$. Hence, $\bar{x} \in \lim \sup_{\nu} C^{\nu}$.

[Case II: $\bar{x} \in \text{hzn } \mathbb{R}^n$.] Suppose $\bar{x} = \text{dir } x \text{ for some } x \neq \mathbf{0}$.

[Case II-a: There exist infinitely many $\nu \in N$ such that $x^{\nu} \in C^{\nu}$.] Then, by definition, there exists $\lambda^{\nu} \searrow 0$ such that $\lambda^{\nu} x^{\nu} \xrightarrow[N]{} x$. Hence, $x \in \limsup_{\nu} C^{\nu}$. Therefore, $\bar{x} = \dim x \in \dim \sup_{\nu} C^{\nu}$.

[Case II-b: There exists infinitely many $\nu \in N$ such that $x^{\nu} \in \operatorname{dir} K^{\nu}$.] In this case, for each such ν there exists $y^{\nu} \in K^{\nu}$ such that $x^{\nu} = \operatorname{dir} y^{\nu}$. Also, we have $\lambda^{\nu} y^{\nu} \to x$ for some $\lambda^{\nu} > 0$ by definition of convergence of direction points. Therefore, $x \in \lim \sup_{\nu} K^{\nu}$, and hence, $\bar{x} \in \operatorname{dir} \limsup_{\nu} K^{\nu}$.

2000.10.4

We thus have shown that $\limsup_{\nu} (C^{\nu} \cup \operatorname{dir} K^{\nu}) \subseteq (\limsup_{\nu} C^{\nu}) \cup \operatorname{dir} (\limsup_{\nu} C^{\nu} \cup \limsup_{\nu} K^{\nu})$. Conversely, suppose that $\bar{x} \in (\limsup_{\nu} C^{\nu}) \cup \operatorname{dir} (\limsup_{\nu} C^{\nu} \cup \limsup_{\nu} K^{\nu})$. If $\bar{x} \in (\limsup_{\nu} C^{\nu})$, we apparently have $\bar{x} \in \limsup_{\nu} (C^{\nu} \cup \operatorname{dir} K^{\nu})$.

If $\bar{x} \in \operatorname{dir} (\limsup_{\nu} C^{\nu} \cup \limsup_{\nu} K^{\nu})$, we have $\bar{x} = \operatorname{dir} x$ for some $x \in \limsup_{\nu} C^{\nu} \cup \limsup_{\nu} K^{\nu}$ with $x \neq 0$. In case of $x \in \limsup_{\nu} K^{\nu}$, we have

$$\exists N \in \mathcal{N}_{\infty}^{\#}, \exists y^{\nu} \in K^{\nu} \ (\nu \in N) : y^{\nu} \xrightarrow[N]{} x,$$

and hence,

$$\exists \operatorname{dir} y^{\nu} \in \operatorname{dir} K^{\nu} \ (\nu \in N) : \operatorname{dir} y^{\nu} \xrightarrow[N]{} \operatorname{dir} x.$$

Therefore, $\bar{x} = \operatorname{dir} x \in \lim \sup_{\nu} \operatorname{dir} K^{\nu}$.

In the other case, we have

$$\exists N \in \mathcal{N}_{\infty}^{\#}, \exists x^{\nu} \in C^{\nu} \ (\nu \in N), \exists \lambda^{\nu} \searrow 0 \colon \lambda^{\nu} x^{\nu} \xrightarrow{N} x.$$

By definition, we have

$$\exists N \in \mathcal{N}_{\infty}^{\#}, \exists x^{\nu} \in C^{\nu} \ (\nu \in N) : x^{\nu} \xrightarrow[N]{} \operatorname{dir} x,$$

and hence, we have $\bar{x} = \operatorname{dir} x \in \lim \sup_{\nu} C^{\nu}$.

(ii) Suppose $\bar{x} \in (\liminf_{\nu} C^{\nu}) \cup \operatorname{dir} (\liminf_{\nu} C^{\nu} \cup \liminf_{\nu} K^{\nu}).$

If $\bar{x} \in \liminf_{\nu} C^{\nu}$, then it is clear that $x \in \liminf_{\nu} (C^{\nu} \cup \dim K^{\nu})$. Suppose $\bar{x} \in \dim \inf_{\nu} C^{\nu} \cup \liminf_{\nu} K^{\nu}$. Then, there exists $x \in \liminf_{\nu} C^{\nu} \cup \liminf_{\nu} K^{\nu}$ such that $\bar{x} = \dim x$. [Case: $x \in \liminf_{\nu} C^{\nu}$.] We have

$$\exists N \in \mathcal{N}_{\infty}, \exists x^{\nu} \in C^{\nu} \ (\nu \in N), \exists \lambda^{\nu} \searrow 0 \colon \lambda^{\nu} x^{\nu} \xrightarrow{N} x,$$

and hence,

$$\exists x^{\nu} \in C^{\nu} \ (\nu \in N) : x^{\nu} \xrightarrow[N]{} \operatorname{dir} x.$$

Therefore, $\bar{x} = \operatorname{dir} x \in \liminf_{\nu} C^{\nu}$. [Case: $x \in \liminf_{\nu} K^{\nu}$.] We have

$$\exists N \in \mathcal{N}, \exists x^{\nu} \in K^{\nu} \ (\nu \in N) : x^{\nu} \xrightarrow[N]{} x,$$

that is,

$$\exists \operatorname{dir} x^{\nu} \in \operatorname{dir} K^{\nu} \ (\nu \in N) : \operatorname{dir} x^{\nu} \xrightarrow{N} \operatorname{dir} x.$$

Hence, $\bar{x} = \operatorname{dir} x \in \lim \inf_{\nu} \operatorname{dir} K^{\nu}$.

(iii) Suppose $K^{\nu} = \{0\}$ for each ν and let $\bar{x} \in \liminf_{\nu} C^{\nu}$. If $\bar{x} \in \mathbb{R}^n$, then

$$\exists N \in \mathcal{N}_{\infty}, \exists x^{\nu} \in C^{\nu} \ (\nu \in N) : x^{\nu} \xrightarrow[N]{} \bar{x},$$

and hence, $\bar{x} \in \liminf_{\nu} C^{\nu}$. If $\bar{x} \in \text{hzn } \mathbb{R}^{n}$, then for some $x \neq 0$ we have $\bar{x} = \text{dir } x$ and

$$\exists N \in \mathcal{N}_{\infty}, \exists x^{\nu} \in C^{\nu} \ (\nu \in N) : x^{\nu} \xrightarrow{N} \operatorname{dir} x,$$

and hence,

$$\exists x^{\nu} \in C^{\nu} \ (\nu \in N), \exists \lambda^{\nu} \searrow 0 : \lambda^{\nu} x^{\nu} \xrightarrow[N]{} x.$$

Therefore, $x \in \liminf_{\nu} C^{\nu}$. Then, we have $\bar{x} = \dim x \in \dim \inf_{\nu} C^{\nu}$. \square

Proposition: For a general subset of csm \mathbb{R}^n , written as $C \cup \text{dir } K$ for a set $C \subseteq \mathbb{R}^n$ and a cone $K \subseteq \mathbb{R}^n$, let

$$\mathcal{G}(C,K) = \left\{ \lambda \left[\begin{array}{c} x \\ -1 \end{array} \right] \ | \ x \in C, \lambda > 0 \right\} \cup \left\{ \left[\begin{array}{c} x \\ 0 \end{array} \right] \ | \ x \in K \right\}.$$

Then, we have

(i) $\limsup_{\nu} (C^{\nu} \cup \operatorname{dir} K^{\nu}) \subseteq C \cup \operatorname{dir} K$ if and only if $\limsup_{\nu} \mathcal{G}(C^{\nu}, K^{\nu}) \subseteq \mathcal{G}(C, K)$.

(ii) $\liminf_{\nu} (C^{\nu} \cup \dim K^{\nu}) \supseteq C \cup \dim K$ if and only if $\liminf_{\nu} \mathcal{G}(C^{\nu}, K^{\nu}) \supseteq \mathcal{G}(C, K)$.

(iii)
$$C^{\nu} \cup \operatorname{dir} K^{\nu} \xrightarrow{C} C \cup \operatorname{dir} K \text{ if and only if } \mathcal{G}(C^{\nu}, K^{\nu}) \to \mathcal{G}(C, K).$$

(Proof) (i) ("if" part:) Suppose that $\limsup_{\nu} \mathcal{G}(C^{\nu}, K^{\nu}) \subseteq \mathcal{G}(C, K)$. By Exercise 4.20, it suffices to show that

$$\limsup_{\nu} C^{\nu} \subseteq C$$
 and $\limsup_{\nu} C_{\nu} \cup \limsup_{\nu} K^{\nu} \subseteq K$.

The first inclusion follows from the following chain of implications.

$$\bar{x} \in \limsup_{\nu} C^{\nu}$$
 (1)

$$\Rightarrow \exists N \in \mathcal{N}_{\infty}^{\#}, \exists x^{\nu} \in C^{\nu} \ (\nu \in N) : x^{\nu} \xrightarrow{N} x$$
 (2)

$$\Rightarrow \exists N \in \mathcal{N}_{\infty}^{\#}, \exists \begin{bmatrix} x^{\nu} \\ -1 \end{bmatrix} \in \mathcal{G}(C^{\nu}, K^{\nu}) \ (\nu \in N) : \begin{bmatrix} x^{\nu} \\ -1 \end{bmatrix} \xrightarrow{N} \begin{bmatrix} \bar{x} \\ -1 \end{bmatrix}$$
 (3)

$$\Rightarrow \begin{bmatrix} \bar{x} \\ -1 \end{bmatrix} \in \lim \sup_{\nu} \mathcal{G}(C^{\nu}, K^{\nu}) \tag{4}$$

$$\Rightarrow \begin{bmatrix} \bar{x} \\ -1 \end{bmatrix} \in \mathcal{G}(C, K) \tag{5}$$

$$\Rightarrow \bar{x} \in C.$$
 (6)

The inclusion $\limsup_{\nu}^{\infty} C^{\nu} \subseteq K$ can be shown by the followings.

$$x \in \lim \sup_{\nu}^{\infty} C^{\nu} \tag{7}$$

$$\Rightarrow \exists N \in \mathcal{N}_{\infty}^{\#}, \exists x^{\nu} \in C^{\nu} \ (\nu \in N), \exists \lambda^{\nu} \searrow 0 : \lambda^{\nu} x^{\nu} \xrightarrow{N} \bar{x}$$

$$\tag{8}$$

$$\Rightarrow \exists N \in \mathcal{N}_{\infty}^{\#}, \exists x^{\nu} \in C^{\nu} \ (\nu \in N), \exists \lambda^{\nu} > 0: \begin{bmatrix} \lambda^{\nu} x^{\nu} \\ -\lambda^{\nu} \end{bmatrix} \xrightarrow{N} \begin{bmatrix} \bar{x} \\ 0 \end{bmatrix}$$
 (9)

$$\Rightarrow \begin{bmatrix} \bar{x} \\ 0 \end{bmatrix} \in \limsup_{\nu} \mathcal{G}(C^{\nu}, K^{\nu}) \tag{10}$$

$$\Rightarrow \begin{bmatrix} \bar{x} \\ 0 \end{bmatrix} \in \mathcal{G}(C, K) \tag{11}$$

$$\Rightarrow \bar{x} \in K$$
 (12)

 $\limsup_{\nu} K^{\nu} \subseteq K$

$$x \in \limsup_{\nu} K^{\nu} \tag{13}$$

$$\Rightarrow \exists N \in \mathcal{N}_{\infty}^{\#}, \exists x^{\nu} \in K^{\nu} \ (\nu \in N) : x^{\nu} \xrightarrow{N} x$$
 (14)

$$\Rightarrow \exists N \in \mathcal{N}, \begin{bmatrix} x^{\nu} \\ 0 \end{bmatrix} \in \mathcal{G}(C^{\nu}, K^{\nu}) \ (\nu \in N) : \begin{bmatrix} x^{\nu} \\ 0 \end{bmatrix} \xrightarrow{N} \begin{bmatrix} x \\ 0 \end{bmatrix}$$
 (15)

$$\Rightarrow \begin{bmatrix} x \\ 0 \end{bmatrix} \in \limsup_{\nu} \mathcal{G}(C^{\nu}, K^{\nu}) \tag{16}$$

$$\Rightarrow \left[\begin{array}{c} x\\0 \end{array}\right] \in \mathcal{G}(C,K) \tag{17}$$

$$\Rightarrow x \in K.$$
 (18)

("only if": part) Suppose that $\limsup_{\nu} (C^{\nu} \cup \operatorname{dir} K^{\nu}) \subseteq C \cup \operatorname{dir} K$. Let $\tilde{x} = \begin{bmatrix} \bar{x} \\ -\gamma \end{bmatrix} \in \limsup_{\nu} \mathcal{G}(C^{\nu}, K^{\nu})$. Then, we have

$$\exists N \in \mathcal{N}_{\infty}^{\#}, \exists \left[\begin{array}{c} x^{\nu} \\ -\gamma^{\nu} \end{array}\right] \in \mathcal{G}(C^{\nu}, K^{\nu}) \ (\nu \in N) \colon \left[\begin{array}{c} x^{\nu} \\ -\gamma^{\nu} \end{array}\right] \xrightarrow[N]{} \left[\begin{array}{c} \bar{x} \\ -\gamma \end{array}\right]$$

[Case: $\gamma > 0$.] We must have for all but finite $\nu \in N$ that $\gamma^{\nu} > 0$ and $\frac{x^{\nu}}{\gamma} \in C^{\nu}$. Therefore, $\frac{\bar{x}}{\gamma} \in \lim \sup_{\nu} C^{\nu}$, and hence, $\frac{\bar{x}}{\gamma} \in C$. Then, $\begin{bmatrix} \bar{x} \\ -\gamma \end{bmatrix} \in \mathcal{G}(C,K)$.

2000.10.4

[Case: $\gamma = 0$.] Define $N_1 = \{ \nu \mid \nu \in N, \gamma^{\nu} > 0 \}$ and $N_0 = \{ \nu \mid \nu \in N, \gamma^{\nu} = 0 \}$. If N_1 is infinite, then we have

$$\gamma^{\nu} \searrow 0, \frac{x^{\nu}}{\gamma^{\nu}} \in C^{\nu} \ (\nu \in N), \gamma^{\nu} \frac{x^{\nu}}{\gamma^{\nu}} \xrightarrow[N_1]{} \bar{x}.$$

If N_0 is infinite, then we have

$$x^{\nu} \in K^{\nu}, x^{\nu} \xrightarrow[N_0]{} \bar{x},$$

and hence, $\operatorname{dir} \bar{x} \in \lim \sup_{\nu} \operatorname{dir} K^{\nu}$. Therefore, we have $\operatorname{dir} \bar{x} \in \lim \sup_{\nu} (C^{\nu} \cup \operatorname{dir} K^{\nu}) \subseteq \operatorname{dir} K$. Now, we have $\bar{x} \in K$, and hence, $\begin{bmatrix} \bar{x} \\ 0 \end{bmatrix} \in \mathcal{G}(C, K)$.

(ii) ("if" part:) Suppose $\bar{x} \in C \cup \operatorname{dir} K$

[Case: $\bar{x} \in C$] We have

$$\bar{x} \in C$$
 (19)

$$\Rightarrow \begin{bmatrix} \bar{x} \\ -1 \end{bmatrix} \in \mathcal{G}(C, K) \tag{20}$$

$$\Rightarrow \begin{bmatrix} \bar{x} \\ -1 \end{bmatrix} \in \lim \inf_{\nu} \mathcal{G}(C^{\nu}, K^{\nu})$$
 (21)

$$\Rightarrow \exists N \in \mathcal{N}_{\infty}, \exists x^{\nu} \in C^{\nu} \ (\nu \in N), \exists \lambda^{\nu} > 0 \ (\nu \in N) : \begin{bmatrix} \lambda^{\nu} x^{\nu} \\ -\lambda^{\nu} \end{bmatrix} \xrightarrow{N} \begin{bmatrix} \bar{x} \\ -1 \end{bmatrix}$$
 (22)

$$\Rightarrow \exists N \in \mathcal{N}_{\infty}, \exists x^{\nu} \in C^{\nu} \ (\nu \in N) : x^{\nu} \xrightarrow{N} \bar{x}$$
 (23)

$$\Rightarrow \quad \bar{x} \in \liminf_{\nu} C^{\nu}. \tag{24}$$

[Case $\bar{x} \in \operatorname{dir} K$] Let $x \in K$ be such that $\bar{x} = \operatorname{dir} x$. Then we have

$$\left[\begin{array}{c} x\\0 \end{array}\right] \in \mathcal{G}(C,K) \tag{25}$$

$$\Rightarrow \begin{bmatrix} x \\ 0 \end{bmatrix} \in \liminf_{\nu} \mathcal{G}(C^{\nu}, K^{\nu}) \tag{26}$$

$$\Rightarrow \exists N \in \mathcal{N}_{\infty}, \exists \begin{bmatrix} x^{\nu} \\ -\gamma^{\nu} \end{bmatrix} \in \mathcal{G}(C^{\nu}, K^{\nu}) \ (\nu \in N) : \begin{bmatrix} x^{\nu} \\ -\gamma^{\nu} \end{bmatrix} \xrightarrow{N} \begin{bmatrix} x \\ 0 \end{bmatrix}. \tag{27}$$

Define

$$N_1 = \{ \nu \mid \nu \in N, \gamma^{\nu} > 0 \}$$

and

$$N_0 = \{ \nu \mid \nu \in N, \gamma^{\nu} = 0 \}.$$

We have that

$$\frac{x^{\nu}}{\gamma^{\nu}} \in C^{\nu}$$

for each $\nu \in N_1$ and that

$$\exists x^{\nu} \in K^{\nu}$$

for each $\nu \in N_0$.

[Case: N_0 is finite.] Then, we have

$$N_1 \in \mathcal{N}, \frac{x^{\nu}}{\gamma^{\nu}} \in C^{\nu} \ (\nu \in N_1), \gamma^{\nu} \searrow 0: \gamma^{\nu} \frac{x^{\nu}}{\gamma^{\nu}} \xrightarrow[N_1]{} \bar{x},$$

i.e., $\bar{x} \in \liminf_{\nu}^{\infty} C^{\nu}$.

[Case: N_1 is finite.] Then, we have $N_0 \in \mathcal{N}_{\infty}$ and $x^{\nu} \xrightarrow{N_0} \bar{x}$, and hence, $\bar{x} \in \liminf_{\nu} K^{\nu}$.

[Case: both of N_1 and N_0 are infinite.] We have that $\gamma^{\nu} \frac{x^{\nu}}{\gamma^{\nu}} \xrightarrow{N_1} \bar{x}$, i.e., $x^{\nu} \xrightarrow{N_1} \operatorname{dir} \bar{x}$ and that $x^{\nu} \xrightarrow{N_0} \bar{x}$, i.e., $\operatorname{dir} x^{\nu} \xrightarrow{N_0} \operatorname{dir} \bar{x}$. Therefore, $\operatorname{dir} \bar{x} \in \lim \inf_{\nu} (C^{\nu} \cup \operatorname{dir} K^{\nu})$.

("only if" part:) Suppose
$$\begin{bmatrix} \bar{x} \\ -\gamma \end{bmatrix} \in \mathcal{G}(C, K)$$
.

[Case: $\gamma > 0$.] Then, we have $\frac{\bar{x}}{\gamma} \in C \subseteq \liminf_{\nu} C^{\nu}$.

[Case: $\gamma = 0$.] We have $\bar{x} \in K$, and hence, $\dim \bar{x} \in \dim K \subseteq \liminf_{\nu} (C^{\nu} \cup \dim K^{\nu})$. This means by definition that

$$\exists N \in \mathcal{N}_{\infty}, \exists \tilde{x}^{\nu} \in C^{\nu} \cup \operatorname{dir} K^{\nu} \ (\nu \in N) : \tilde{x}^{\nu} \xrightarrow[N]{} \operatorname{dir} \bar{x}.$$

Let $N_0 = \{ \nu \mid \nu \in N, \tilde{x}^{\nu} \text{ is a direction point} \}$ and $N_1 = \{ \nu \mid \nu \in N, \tilde{x}^{\nu} \text{ is an ordinary point} \}$. If N_1 is infinite, then we have

$$\tilde{x}^{\nu} \in C^{\nu} \ (\nu \in N_1), \ \tilde{x}^{\nu} \xrightarrow[N_1]{} \operatorname{dir} \bar{x},$$

that is,

$$\exists \lambda^{\nu} \searrow 0, \lambda^{\nu} \tilde{x}^{\nu} \xrightarrow{N_1} \bar{x}.$$

Then, we have

$$\left[\begin{array}{c} \lambda^{\nu}x^{\nu} \\ -\lambda^{\nu} \end{array}\right] \in \mathcal{G}(C^{\nu}, K^{\nu}) \ (\nu \in N_{1}), \left[\begin{array}{c} \lambda^{\nu}x^{\nu} \\ -\lambda^{\nu} \end{array}\right] \xrightarrow[N_{1}]{} \left[\begin{array}{c} \bar{x} \\ 0 \end{array}\right].$$

If N_0 is infinite, then we have

$$\tilde{x}^{\nu} \in \operatorname{dir} K^{\nu} \ (\nu \in N_0), \ \tilde{x} \xrightarrow[N_0]{} \operatorname{dir} \bar{x},$$

that is,

$$\exists x^{\nu} \in K^{\nu} \text{ s.t. } \operatorname{dir} x^{\nu} = \tilde{x}^{\nu} \ (\nu \in N_{0}), \exists \lambda^{\nu} > 0 \ (\nu \in N_{0}) : \lambda^{\nu} x^{\nu} \xrightarrow[N_{0}]{} \bar{x},$$

Then,

$$\left[\begin{array}{c} \lambda^{\nu}x^{\nu} \\ 0 \end{array}\right] \in \mathcal{G}(C^{\nu},K^{\nu}), \left[\begin{array}{c} \lambda^{\nu}x^{\nu} \\ 0 \end{array}\right] \xrightarrow[N_0]{} \left[\begin{array}{c} \bar{x} \\ 0 \end{array}\right].$$

Consequently, we have

$$\left[\begin{array}{c} \bar{x} \\ 0 \end{array}\right] \in \lim \inf_{\nu} \mathcal{G}(C^{\nu}, K^{\nu}).$$

(iii) This is clear from (i) and (ii). □

5.C: Local Boundedness

Exercise (5.26): Let $S: \mathbb{R}^n \implies \mathbb{R}^m$ be osc.

- (a) S(C) is closed when C is closed and $(S^{\infty})^{-1}(\mathbf{0}) \cap C^{\infty} = \{\mathbf{0}\}$. Then, $S(C)^{\infty} \subseteq S^{\infty}(C^{\infty})$.
- (b) $S^{-1}(D)$ is closed when D is closed and $S^{\infty}(\mathbf{0}) \cap D^{\infty} = \{\mathbf{0}\}$. Then, $(S^{-1}(D))^{\infty} \subseteq (S^{\infty})^{-1}(D^{\infty})$.

(Proof) It suffices to show (b) only.

(The closedness of $S^{-1}(D)$:)

$$((S^{-1}(D))^{\infty} \subseteq (S^{\infty})^{-1}(D^{\infty})$$
:) Suppose that $\bar{x} \in (S^{-1}(D))^{\infty}$. Then,

$$\exists x^{\nu} \in S^{-1}(D), \exists \lambda^{\nu} \searrow 0: \lambda^{\nu} x^{\nu} \xrightarrow{N} \bar{x},$$

which implies

$$\exists u^{\nu} \in D, \exists x^{\nu} \in S^{-1}(u^{\nu}), \exists \lambda^{\nu} \searrow 0 \colon \lambda^{\nu} x^{\nu} \xrightarrow[N]{} \bar{x}.$$

If $\bar{x} = 0$, then we have $\bar{x} = 0 \in (S^{\infty})^{-1}(0) \subseteq (S^{\infty})^{-1}(D^{\infty})$, and we are done. Hence, we assume $\bar{x} \neq 0$. [Case I: $\{u^{\nu}\}_{N}$ is bounded] We have

$$\lambda^{\nu}u^{\nu} \to 0 \in D^{\infty}$$

and hence, $\bar{x} \in (S^{-1})^{\infty}(D^{\infty})$.

[Case II: $\{x^{\nu}\}_{N}$ is unbounded] Since $\{(x^{\nu}, u^{\nu})\}_{N}$ is unbounded, there exists a subsequence $\{(x^{\nu}, u^{\nu})\}_{N'}$ of $\{(x^{\nu}, u^{\nu})\}_{N}$, $\mu^{\nu} \searrow 0$ and $(\bar{x}', \bar{u}) \neq \mathbf{0}$ such that $\mu^{\nu}(x^{\nu}, u^{\nu}) \xrightarrow{N} (\bar{x}', \bar{u})$. If $\bar{x}' = \mathbf{0}$, then we have $\mathbf{0} \neq \bar{u} \in S^{\infty}(\mathbf{0}) \cap D^{\infty}$, a contradiction. Therefore, we have $\bar{x}' \neq \mathbf{0}$. It follows from the lemma in my note RW-5.D that $\bar{x}' = \gamma \bar{x}$ for some $\gamma > 0$. Hence, we can assume, by scaling μ^{ν} if neccessary, that $\bar{x}' = \bar{x}$. Then, we have $\bar{x} \in (S^{-1})^{\infty}(\bar{u})$ and $\bar{u} \in D^{\infty}$, and hence, $\bar{x} \in (S^{-1})^{\infty}(D^{\infty})$. \square