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3.B: Horizon Cones

Exercise (3.4): CUdir K C csm R" is closed if and only if C and K are closed in R™ and C*° C K. In
general, its cosmic closure is

csm (CUdir K) =cl CuUdir (C* Ucl K).

(Proof) (C) Let us consider a converging sequence {Z"} C C Udir K with Z¥ - Z € csm R". If Z € R,
then for all but finite v we have ¥ € C, and hence, we have Z € cl C. If Z € hzn R”, then for some z # 0
we have T = dir z. Define
N, ={v|i" eC}
and
No={v|veN,z" edirK}.

[Case: Np is infinite] Then, by definition, we have
NN 0: Nz” =z,

and hence, x € C*°. Therefore, Z = dir z € dir C*°.
[Case: N is infinite] Then, by difinition, for each v € Ny there exists ¥ € K such that ¥ = dir 2¥
and we have
AN > 0: A2 — =z

Therefore, € cl K, and hence, T = dirz € dircl K.
(D) Suppose T € clC Udir (C*® UdK). If z € clC, then T is the limit point of a sequence in C.
Therefore, z € csm (C U dir K).
Suppose Z € dir (C* U cl K). Then, there exists  # 0 such that z = dir z.
[Case: x € C*°] We have
NN 0: N2 > o,

and hence, ¥ — dir z = Z. Therefore, Z € csm C.
[Case: z € cl K] Then, there exists a sequence {z”} in K converging to x. This means

dir z¥ € dir K (v € N), dir ¥ — dir z,
and hence, £ = dirz € csmdir K. 00

Proposition: For a general subset of csm R™, written as CUdir K for a set C C R™ and a cone K C R",

0= (3 % |1 ecersohuf[ 7] sl

C Udir K is cosmically closed if and only if G(C, K) is closed.

(Proof) (“if” part:) Suppose that G(C, K) is closed. Then, it is obvious (?) that C' and K are closed. It
suffices to show that C*>° C K.
Let z € C*°. We have
dz¥ € C, 3N N\ 0: \z" — .



Therefore, we have
14

X’[fl]EQ(C’,K),)\"[f;]—)[ﬁ].

Since G(C, K)is closed, we must have [ 'g ] € G(C,K), and hence, z € K.

(“only if” part:) Suppose that csm (C U dir K) is closed. Let us consider a sequence
[ x,,]eg(C,K)with [ xy]%[ v ]

- = -
[Case: v > 0] Then, we have for all but finite v that v > 0. Therefore,

Since C'is closed, we have 2 € C. It follows that [ _:1:7 ] € G(C,K).

[Case: v = 0] If for infinitely many v we have v” > 0, we have

v

zv x
—eC, v \0, v"— >z
v v

Therefore, x € C*°. Then, we have z € K since csm (C' U dir K) is closed. Hence, we have { g ] €
G(C,K).

If for infinitely many v we have v = 0, then we have

¥ e K,z" — x.

It follows from the closedness of K that € K, and hence, [ g ] € G(C,K). O

3.F: Cosmic Convexity

Exercise (3.44): For a general subset of csm R", written as C U dir K for a set C C R™ and a cone
K CR"*, one has
con (C Udir K) = (con C + con K) U dir (con K).

(Proof) For C' Udir K C csm R™ define
Q(C,K):{/\[ _xl] |x€C,A>O}U{[§] |xeK}.

G(con C + con K, con K) = con G(C, K),

it will follow that for any convex subset C' U dir K’ such that C' C C' and K C K', we have G(C,K) C
G(C',K") since G(C', K') is concex due to 3.42. Therefore, we have

If we can show that

G(con C' + con K, con K) = con G(C,K) C G(C',K"),

and hence, con C' +con K C C",con K C K.
Now, let us show that
G(con C + con K, con K) = con G(C, K).

Let
[ _z ] € con G(C, K).

Then, we have

3[ _»2 ][ _Z ][y(l]][yé ] € G(C,K) with & >0 (i =1,---, k),
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and

3)‘17"'5)‘165,“17"'5#4 > 0 with ZA1+Z/J’J =1

|:_€:|=)\1|:_€-i:|+"‘+)\k|:_§z ]+u1{y(l)]+"'+,ul yé]
[Case 1:] k=0 (or £ =0).

T | _ vl v | _ [ my 4y |
][ e ]

where p1yi + - -- + iy € con K. Hence,

such that

[ _z ] = [ T) ] € G(con C + con K, con K).
[Case 2:] k>0 (or £ > 0).
Since we have ¥ € C (i =1,---,k) and y; € K (j =1,---,1), noting that

3]
E= &+ + M

we have

r M& 7 Mee Tk
- = c—+ e+ == =+ my1 + -+ wy € con C + con K.
£ & & ¢ & T

Therefore, we have

[ Hé] [ ] € G(con C + con K, con K),
) C

and hence, inclusion con G(C, K) C G(con C + con K, con K) was now shown.
Conversely, suppose that

[Case 1:] £ =0.
In this case, since z € con K, we have

_2 ] € G(con C + con K, con K).

F, e K =y1 4+ -4y

Therefore,
T _ | Yi
[0]—[0]4- +[0]€cong(C,K).
[Case 2:] £> 0.
Since % €conC +con K,
k
A1, -, A, > 0 with Z:l: andz; €C (i=1,---,k), y; € K (j=
i=1
such that
x
A R Rt TR 7

Then, we have



Exercise (3.42): CUdir K C csm R" is convex if and only if

Q(C,K)={/\[ _ﬂ |xeC,/\>O}U{[‘g] |m€K}

18 convez.

(Proof) Suppose C U dir K is convex. Then, by the definitions, C' and K are convex and C + K C C.
Let y1,y2 € G(C, K).

[Case 1:] z; = \; [ le ] for some z; € C and A\; >0 (i = 1,2).
We have

)\1 )\2
pYEs vl v v
-1 A =X o o €G(C K)

21+ 2=\ { fll ] +)\2[ 2 ]= [ Ay + Aay

] = (A + A2)

by the convexty of C.
[Case 2:] z1=/\[ _a:l ] for some z € C'and A > 0. zgz[g]forsomeyef(.
We have

arnms[ 2]+ [3] [ e

-1
by C+ K CC.
[Case 3:] 2; = [ ‘%’ ] for some y; € K (i =1,2).
We have

z1+z2=[y01 ]+[y02] :[ylz)rm] € G(C,K)

by the convexity of K. Therefore, G(C, K) is convex.
Conversely, suppose that G(C, K) is convex. Then, it is obvious that C' and K are convex. We will
show that C'+ K C C. Let x € C and y € K. Then, by the convexity of G(C, K), we have

[wjly]=[_”’1]+[g]eg(c,1{).

Hence, z +y € C. O

4.F: Horizon Limit

Exercise (4.20°): We have
(i) limsup,(C” Udir K*) = (limsup, C*) U dir (lim supS° C” U lim sup,, K"),
(i) liminf,(C” Udir K*) D (liminf, C¥) U dir (liminf;° C” U liminf, K*).

If K¥ = {0} (v € N), we have equality in (ii).

(Proof) (i) Suppose Z € limsup, (C” Udir K¥). Then,

3N e N¥,32¥ € C” U dir K (VEN):a:"?a‘:.

[Case I: T € R".] In this case, for a sufficiently large vp we have v > vy, v € N implies ¥ € C¥. Hence,
Z € limsup, C".

[Case II: Z € hzn R™.] Suppose Z = dir z for some z # 0.

[Case II-a: There exist infinitely many v € N such that ¥ € C”.] Then, by definition, there exists
AY N\, 0 such that \¥z" 73@ Hence, = € limsup,° C¥. Therefore, = dir z € dir limsup;° C”.

[Case II-b: There exists infinitely many v € N such that ¥ € dir K¥.] In this case, for each such
v there exists y¥ € K" such that ¥ = dir y”. Also, we have A\Yy” — x for some A\¥ > 0 by definition of
convergence of direction points. Therefore, z € limsup, K, and hence, Z € dir limsup, K".
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We thus have shown that limsup, (C* U dir K*) C (limsup, C*) U dir (limsup;° C” Ulimsup, K").

Conversely, suppose that Z € (limsup, C¥) U dir (limsup,’ C* U limsup, K”). If £ € (limsup, C*),
we apparently have Z € limsup, (C¥ U dir K7).

If £ € dir (limsupy® C” U limsup, K*), we have Z = dir z for some z € limsup,’ C” U limsup, K"
with = # 0. In case of z € limsup, K", we have

IN e N*,3y” € K¥ (v € N):y” —,

and hence,
Adir y* € dir K¥ (v € N):dir ¥ Tdir x.

Therefore, Z = dir € limsup,, dir K.
In the other case, we have

AN e N#, 32" € C¥ (v € N),3IA” N\, 0: \"z” — .

By definition, we have
IN e N#,3z” € C¥ (v € N):z¥ —rdirz,

and hence, we have Z = dir z € limsup, C”.

(ii) Suppose Z € (liminf, C*) Udir (liminf;° C¥ Uliminf, K").

If £ € liminf, C¥, then it is clear that 2 € liminf,(C” U dir K¥). Suppose Z € dir (liminf3° C” U
liminf, K"). Then, there exists z € liminf;° C¥ Uliminf, K" such that Z = dir .
[Case: z € liminf)° C”.] We have

AN € Noo,Az” € C¥ (v € N), 3N \ 0: \z¥ — o

and hence,
Jz¥ € C¥ (v € N):z¥ ?dirm.

Therefore, Z = dir € liminf, C”.
[Case: z € liminf, K”.] We have

AN € N,3z" € K” (VGN):m"Tm,

that is,
Adir z¥ € dir K¥ (v € N):dir 2¥ Tdir x.

Hence, Z = dir z € liminf, dir K.
(iii) Suppose K¥ = {0} for each v and let Z € liminf, C”. If Z € R™, then

AN € N,z € C¥ (v € N): 2" — %
and hence, Z € liminf, C¥. If Z € hzn R”, then for some x # 0 we have Z = dir z and
AN € Noo, Iz € CY (v € N):m"Tdirm,

and hence,
dz¥ € C¥ (v € N), 3N N\ 0: \Vx¥ -

Therefore, z € liminf)° C”. Then, we have & = dir z € dir liminf;° C¥. O

Proposition: For a general subset of csm R™, written as CUdir K for a set C C R™ and a cone K C R,
let
Q(C,K)z{,\[ _‘”1 ] | a:eC,/\>O}U{[ g] | a:eK}.

(i) limsup,(CY Udir K¥) C C Udir K if and only if limsup, G(C”,K") C G(C, K).

Then, we have



(i) liminf,(C” Udir K¥) D CUdir K if and only if liminf, G(C¥,K") D G(C, K).
(iii) C¥ Udir K¥ - C Udir K if and only if G(C”, K") — G(C, K).

(Proof) (i) (“if” part:) Suppose that limsup, G(C”,K") C G(C, K). By Exercise 4.20, it suffices to show
that
limsup, C” C C and limsup;’ C, Ulimsup, K” C K.

The first inclusion follows from the following chain of implications.

Z € limsup, C” (1)
= INeNZ Tz"eC” (vEN)a" —z (2)
= 3NeN£,3[f1]69(0v7Ku) (,,eN):[fl]T[_‘?] (3)
= [ _f ] € limsup, G(C”, K") 4)
> | 3 ]escm 5)
= zeC. (6)

The inclusion lim sup,° C* C K can be shown by the followings.

x € limsup;° C¥ (7)

= 3INeN¥ e (v € N), AN N 0: N2 — 7 (8)
# v v v . VgV z

= AN e NZ,Ix" € C¥ (v € N),3IN > 0: RV Rrvd B (9)

= [ ?_) ] € limsup, G(C¥, K") (10)

T
HECE an
ieK (12)
limsup, K¥ C K

z € limsup, K" (13)

= 3IN e N¥ 3z" e K¥ (veN):a" —az (14)
z¥ v T | o= T

= aNeN,[O]eg(C,K)(yeN).[O]T[O] (15)

= [ g ] € limsup, G(C”, K") (16)

= [ o ] € G(C,K) (17)

> zekK. (18)

_'T,Y ] € limsup, G(C”, K").

% e C”.

(“only if”: part) Suppose that lim sup, (C*Udir K¥) C Cudir K. Let & = [
Then, we have

N e N#, 3[ “‘";, ] € G(C",K") (v € N): [ myy]

N
[Case: v > 0.] We must have for all but finite v € N that v > 0 and Therefore,

28

lim sup, C, and hence, % € C. Then, [ —5:7 ] € G(C,K).
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[Case: v = 0.] Define Ny = {v|v € N,4” >0} and Ng = {v | v € N,4” = 0}. If N; is infinite, then
we have . .
v z v vZ _
Y N0,— €eC” (veN),y— —1I.
/71/ ,yl/ ]\r1
If Ny is infinite, then we have
¥ € KV, 2" — 7,
No

and hence, dir Z € limsup,, dir K¥. Therefore, we have dir Z € limsup, (C” U dir K¥) C dir K. Now, we

have € K, and hence, [ g ] € G(C,K).

(i) (“if” part:) Suppose Z € C' U dir K.
[Case: Z € C] We have

reC (19)
N [ _f ] € G(C, K) (20)
= [ 1 ] € liminf, G(C”, K¥) (21)
= IN€ENy,Ia" €C” (e N),IN" >0 (v e N): [ ’\_Viz ] — [ _”i ] (22)
= 3N € Ny,Iz" € C” (VEN):SL‘VT)SZ' (23)
= I € liminf, C”. (24)

[Case Z € dir K| Let € K be such that = dir z. Then we have

[ g ] € G(C,K) (25)
= [ g ] € liminf, G(C¥, K") (26)
it v v . ¥ T
= HNGNOO,EI[_,Y,,]EQ(C’,K)(VGN).[_,,]7[0]. (27)
Define
Ny ={v|ve N,y >0}
and

No={v|v e N,y =0}
We have that

for each v € N; and that

for each v € Ny.
[Case: Ny is finite.] Then, we have

:L.V .Z.V
N eN,—eC”(ve N ),v" 0y — —=T,
1 o (v 1,7 N\ ’Y,Y,, le
ie., T € liminf° CV.
[Case: NV is finite.] Then, we have Ny € N and z” 73‘:, and hence, z € liminf, KV.
0

[Case: both of N7 and Ny are infinite.] We have that fy”,zy—z 7)3‘:, ie., z¥ 7) dir Z and that ¥ Ta‘:,
1 1 0
ie., dir z¥ ~ dir Z. Therefore, dir Z € liminf, (C* U dir K*).
0

(“only if” part:) Suppose [ _i ] € G(C,K).



[Case: v > 0.] Then, we have % € C Climinf, C”.
[Case: v = 0.] We have Z € K, and hence, dir € dir K C liminf,(C” Udir K¥). This means by
definition that
AN € N, 33" € C* Udir K¥ (v € N): 3 7>dim‘;.

Let Ng = {v|v € N,& is a direction point} and N; = {v|v € N,&" is an ordinary point}. If N; is
infinite, then we have
" eC” (veN), & ?diriﬁ,
1

that is,
A N0, N — T
Ny

Then, we have
AV ” 5 ¥
[ -\ ]Gg(C,K)(V€N1)7|: -\ :|71)|:

If Ny is infinite, then we have

|

S 8

¥ € dir K¥ (v € Ny), :Z"Tdir:f:,
0

that is,
Jz¥ € KV s.t. dirz” =3 (v € Np),IN” >0 (v € Np): Nz %
0

[ )‘Voxy ] € G(C",K"), [ )‘Voxy ] w7 [ ] :

|

(iii) This is clear from (i) and (ii). O

Then,

S 8

Consequently, we have

] € liminf, G(C”, K").

(e 2R ]

5.C: Local Boundedness

Exercise (5.26): Let S:R™ = R™ be osc.

(a) S(C) is closed when C is closed and (S°°)~1(0) N C*® = {0}. Then, S(C)>° C S>°(C™).

(b) S7Y(D) is closed when D is closed and S®(0) N D*® = {0}. Then, (S~1(D))>® C (S*°)"}(D*>).
EProof) It suffices to show (b) only.

The closedness of S~1(D ) )
((S71(D))> C (8*°)1(D*):) Suppose that € (S~ 1(D))*. Then,

Jz¥ € STH(D), AN N\, 0: \Vz” — 7,

which implies
Ju” € D,3z” € ST (u”),IN \, 0: \z¥ 7)5:

If =0, then we have T = 0 € (S*)~1(0) C (S*)1(D>), and we are done. Hence, we assume Z # 0.
[Case I: {u”}y is bounded] We have

\u¥ =0 € D™,

and hence, z € (S 1) (D>).

[Case II: {z"}x is unbounded] Since {(z*,u")} n is unbounded, there exists a subsequence {(z*,u”)} N
of {(z¥,u")}n, p¥ ¢ 0 and (Z',a) # 0 such that p”(z”,u”) T(E’,ﬂ). If 3 = 0, then we have
0 # @ € S°(0) N D>, a contradiction. Therefore, we have ' # 0. It follows from the lemma in

my note RW-5.D that &' = 4z for some v > 0. Hence, we can assume, by scaling p” if neccessary, that
z' = Z. Then, we have Z € (S71)®(4) and @ € D>, and hence, Z € (S~1)>°(D>). O



