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Review of Cosmic Spaces (3.A and 4.F)

We sometimes use the notion of the extended real RU{+o00, —0o}. The space R” is also eztended
to csm R? = R" U hzn R?, which is called cosmic closure of R™.

For x # 0 dir z can be considered as “the point at infinity in the direction of z”. The set
hzn R™ consists of all such points:

hznR = {dirz |0 #z € R"}.

Each subset D C hzn R® can be uniquely represented by a cone K C R” as D = dir K,
where

dir K ={dirz |0 #z € K}.

Hence, each § C csm R" is written uniquely as S = C' Udir K, where C' C R™ is a subset and
K CR™ is a cone.

Definition (3.1): For a sequence {z"} C csmR” and a point T € csmR" we say ¥ — T if
either

(i) z € R*, ¥ € R™ for all but finite v and ¥ — & in the ordinary sense.
(i) z =dirz € hzan R", ¥ € R" for all but finite v and
NN 0: N2 — . (1)
(iii) Z=dirz € hznR", ¥ = dirz¥ € han R" for all but finite v and
AN > 0: 2" — z. (2)

(iv) Z=dirz € hzn R", both {z"} NR" and {Z"} Nhzn R" are infinite, and for {z"} NR" (1)
holds and and for {z"} Nhzn R™ (2) holds.

O

Definition (in the first paragraph of 4.F): For S¥ C csm R"
limsup, S¥ = {z € csmR" | AN € NZ 3z e 5v (veN):z¥ Tw}, (3)
liminf, S = {z € csm R" | IN € N,3z” € S (v € N):z" T:B} (4)
|

Exercise (4.20’): We have
(i) limsup,(C” Udir K¥) = (limsup, C¥) U dir (limsup;° C* U limsup,, K"),
(ii) liminf, (C” Udir K¥) O (liminf, C¥) Udir (lim inf)° C¥ U lim inf, KV).

If K¥ = {0} (v € N), we have equality in (ii). O
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5.D

Definition (cosmic outer/inner limit): Let S:R” =3 csm R™. For z € R" the cosmic outer

limit lim sup S(z) and the cosmic inner limit lim inf S(z) at T are defined as
T =T

limsupS(z) = U lim sup,, S(z") (5)
T ¥ —T
liminf S(z) = qu lim inf, S(z"). (6)

Definition (horizon outer/inner limit for point-to-set functions): For C:R" = R™ and z € R

define

lim sup *°C(x)

T—T

lim inf *°C(z)

T—T

Note the difference from S*°(z) (see 5(6)).
Let us consider S:R" = csm R™, where csm R™ = R™ U dir R™ so that for each z S(z) is
written as S(z) = C(z) Udir K(x), where C(z) C R™ is a subset and K(z) C R™ is a cone.

U lim sup,, *°C(z"),

TV =T
(] liminf, ©C(z").

¥ =T

Proposition: For S:R* = csm R™ and z € R® we have

lim sup S(x)
T—T

lim inf S(x)

T—T

= limsup C(z) U dir (lim sup *C(z) U lim sup K(IE)) , (9)
T—T T—T T—T

D liminfC(x)
Tr—T

|Jdir <lim inf °C(z) U lim ipr(x)) .

T—T

For S:R"* =3 R™ equality holds in (10).

(Proof)

lim sup S(z)

T

U lim sup,, S(z")

T—T

(11)

¥ —7T
U (limsup, C(z") |Jdir (limsup;® C(z”) Ulimsup, K(z"))) (12)
¥ —T
U lim sup,, C(z")
TV =T
Jdir ( | limsup® C(z)U J limsup, K(z")) (13)
¥ =T ¥ —T
lim sup C(z) U dir (lim sup *°C(z) U lim sup K(ac)) (14)
Tz Tz Tz
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and

h;rﬂrl:%lf S(z) = xQz lim inf, S(z") (15)
2 ﬂ (liminf, C(z¥) |Jdir (lim infy° C(z¥) Y liminf, K (z"))) (16)
¥ —1T
= ﬂ lim inf, C(z")

¥ —T

Jdir ( (] (liminfy C(w”)Uliminf,,K(x”))) (17)

TV =T

U

ﬂ lim inf,, C(z")

¥ —=T

| dir ( ﬂiliminfﬁo C(z*)U ﬂiliminf,, K(w”)) (18)
= liminfC(xz)

T—T

U dir (lim inf °C(z) Ulim ipr(:v)) . (19)

T—T T—T

O

Definition (cosmic continuity/semicontinuity): For S:R" =% csm R™, S is cosmically continu-
ous at T if

limsup S(z) C S(z) C liminf S(z), (20)
T T2z
or equivalently, if
limsup, S(z*) C S(z) C liminf, S(z") (21)

whenever ¥ — 7.
S is cosmically osc at x if

limsup S(z) C S(z) (22)
T—T
or equivalently, if
limsup, S(z¥) C S(z) (23)
for ¥ — .
S is cosmically isc at T if
S(@) C liminf S(), (24)
or equivalently, if
S(z) C liminf, S(z"). (25)

for each z¥ — z. 0O

Proposition (5.27’): S:R™ = csm R™ is cosmically osc at Z if and only if

limsupC(z) C C(z), limsup*C(x) U limsup K (z) C K(z).

T—T T—T T—T
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Counterexample (for 5.27 Proposition and 4.20 Exercise): Let us consider S:R = csm R =
R U {o0, —0c0} defined as
{z7'} U {o0} if x <0,
S(z) =q PU{c0,—0} ifz=0, (26)
{z7'}U{~-oc} ifz>0.

S is cosmically isc (actually cosmically continuous) at 0 but
liminf °C(z) = {0}, liminf K(z) = {0}.
z—0 z—0

(Proof) Let us consider an arbitrary sequence {z"} converging to 0. Define a sequence {u”} by

L ifz¥ >0, (27)

v

{ 4+oo ifz¥ <0,
u’ =
+o00 otherwise.

Then, u” € S(z¥) for every v and u” — +oo. Therefore, +00 € liminf, S(z”). Similarly,

—o0 € liminf, S(z¥). This shows {+00, —o0} C liminf, ,o S(z), and hence, S is cosmically isc.

On the other hand, let us consider a sequence {z”} defined as z¥ = % For this sequence,

lim inf$° C(z") = {0}, liminf, K(2”) = {0}.
This sequence is also a counterexample for 4.20. (More explicitly, the sequence is given by
= {5 o 28)
) O
Definition (total continuity /semicontinuity): S:R" = R™ is totally continuous at Z if S(z) is

closed and
S(z") R S(z) whenever ¥ — T,

that is,
csm S(z") < esm S(z) whenever ¥ — z,

which is equivalent to
lim, S(z") = S(z), limsup® S(z¥) C S(Z)*° whenever ¥ — T

by Proposition 4.24.
S is totally osc if

limsup S(z) C S(z), limsup*S(z) C S(z)>,

T T
i.e., for every sequence z¥ — =
lim sup, S(z") C S(z), limsup® S(z”) C S(z)™.
S is totally isc if
S(z) C liminf S(z), S(z)* C liminf*S(z),

T—T T—T

that is, for each sequence ¥ — Z we have

S(z) C liminf, S(z”), S(z)*° C liminf}° S(z").
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However,
Remark: Total inner semicontinuity is equivalent to ordinary inner semicontinuity.

(Proof) See Exercise 4.21(c) (but not 4.20). O

Proposition: S:R® =2 R™ is totally continuous if and only if it is continuous and

lim sup ©°S(z) C S(z)>. (29)

T—T
Total continuity at T is automatic from continuity at T when
(i) S is convez-valued on a neighborhood of T and S(z) # 0, or
(ii) S is cone-valued on a neighborhood of Z, or

(iii) S is locally bounded at Z.

(Proof) We will show (i) only since the others can be shown similarly. Suppose that for some
neighborhood V' of Z S is convex-valued, that S is continuous at Z and S(z) # 0.
For each sequence {z"} converging to Z there exists a number v such that z¥ € V for v > vy,

and hence, S(z") is convex for v > vy. It follows from Theorem 4.25 that S(z") R S(z). O
Exercise (5.30): Consider a mapping S:R" = R™ and subsets C* C R".
(a) If S is isc, one has liminf, S(C¥) O S(liminf, C).

(b) If S is osc, limsup, S(C¥) C S(limsup, C¥) provided that S~ is locally bounded, or alter-
natively that (S°°)~1(0) N limsup® C¥ = {0}.

(c) If S is continuous, one has S(C¥) — S(C) whenever C¥ — C and S~! is locally bounded,
or alternatively, whenever C¥ 0 and (S°)~1(0) nC> = {0}.
(d) If S is totally continuous, one has S(C") R S(C) whenever C” R C, (S®°)~1nC> = {0}
and (S*°)(C*®) C S(C)*°.
(Proof) (a) Supposing @ € S(liminf, C*), we have
@ € S(liminf, C¥)
= 37 € liminf, C":u € S(7)
= 3N € Ny, 2" € C¥ (v € N)::c"T)E,
u € S(z).
Since S is isc, we have
a € S(z) C liminf, S(z").

However, since z” € C¥, we have lim inf, S(z”) C liminf, S(C").
(b) Let @ € limsup, S(C”). Then,

3N e NZ,3u” € 8(C") (VEN):u”Tﬂ

or
N € NZ,3z” € C” (VEN):u”ES(z”),u”T)ﬂ.
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[Case I: S~! is locally bounded.] If ! is locally bounded, then there exists a neighborhood
V of @ such that S~1(V) is bounded. Since we have for some N’ € N¥ with N’ C N that
u’ €V (v € N'), we must have S~!(u”) C S~ (V) (v € N'), the sequence {z"}x is bounded.

[Case II: (S*°)~1(0) NlimsupS® C” = {0}. (cf. the argument in the proof of Theorem 4.26)]
We will show that {z"} y is bounded. Suppose, on the contrary that {z"}y is unbounded. Then,
there exists a subsequence {z"} ' of {z"}xn, AY \, 0 and z # 0 such that \“z" % Then, we
have z € limsup;° C¥ by definition. We also have \"(z,u") 7)(30,0). Since ¥ € S~ (u¥) for
v € N', we have z € (S71)*(0), and hence, z = 0, a contradiction.

Therefore, in any case there exists a converging subsequence {z"} y» of {z"}y:. Let =¥ W I.

Then, z € limsup, C”.
By renumbering, we assume {z”} v~ is indexed by the natural number. Then, z¥ — Z,u” — 4
and u” € S(z¥). Therefore, 4 € limsup,_,; S(z). On the other hand, since S is osc,

@ € limsup S(z) C S(z) C S(limsup, C").

T
(c) We have from (a) and (b) that
lim sup, S(C¥) C S(limsup, C¥) C S(liminf, C¥) C liminf, S(C").
(d) It follows from (c) that S(C¥) — S(C). We must show that
lim sup;® S(C¥) C §°(C*) (C S(C)*)
(see Proposition 4.24). Suppose that @ € limsup)® S(C). Then, we have
IN € NZ,3u” € S(C”) (v € N),3\ N\, 0: \u” —,

or
AN e N#,3z" € OV (v € N),3IN \, 0:w” € S(z¥), \u” — .

If @ = 0, then we have 4 = 0 € §°(0) C S°°(C), and we are done. Hence, we assume @ # 0.
[Case I: {z"}y is bounded] We have

Naz¥ = 0eC™,

and hence, 4 € S®°(C™).

[Case II: {z"}y is unbounded] Since {(z”,u")}n is unbounded, there exists a subsequence
{(z¥,u”)}nr of {(z¥,u”)}n, ¥ ¢ 0 and (Z,@’) # 0 such that p”(z”,u”) 7(:3,11’). Ifa' =0,
then we have 0 # z € (S~1)%°(0) N C™, a contradiction. Therefore, we have @ # 0. It follows

from the lemma below that %' = @ for some v > 0. Hence, we can assume, by scaling p” if
necessary, that @' = 4. Then, we have @ € S®°(Z) and T € C*, and hence, 7 € S®(C*). O

Lemma: Let us consider a sequence {z"}. Then, there ezists X \, 0 and T with ||Z|| = 1 such
that \z¥ — = if and only if ﬁ — Z.

(Proof) It suffices to prove the “only if” part.
For each v let y” be the projection of z onto the line through z¥ and the origin. Then, we
have ||z — y¥|| < ||z — A\Yz"||, and hence, ¥ — Z (v — ).
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Since % = HzZ” for each v, it follows that ﬁ —Z (v—00). 0
Appendix

(Proof of Exercise 4.20°) (i) Suppose Z € limsup, (C” U dir K”). Then,
IN e NZ,32” € C* Udir K (v € N):x’/?a_c.

[Case I: £ € R".] In this case, for a sufficiently large vy we have v > vy, v € N implies z¥ € C”.
Hence, z € limsup, C".

[Case II: Z € hzn R™.] Suppose Z = dir z for some z # 0.

[Case II-a: There exist infinitely many v € N such that ¥ € C”.] Then, by definition,
there exists A\¥ N\, 0 such that A\"z" 7):1: Hence, z € limsup,®° C¥. Therefore, z = dirz €
dir lim sup;° C".

[Case II-b: There exists infinitely many v € N such that ¥ € dir K”.] In this case, for
each such v there exists y” € K" such that z¥ = diry”. Also, we have A\Yy” — z for some
AY > 0 by definition of convergence of direction points. Therefore, x € limsup, K", and hence,

z € dir limsup, K".

We thus have shown that lim sup, (C”Udir K¥) C (limsup, C”)Udir (limsup)® C*Ulim sup, K").

Conversely, suppose that Z € (lim sup, C¥)Udir (limsupS® C*Ulim sup, K”). If € (limsup, C"),
we apparently have z € limsup,(C” U dir KV).

If z € dir (limsup® C¥ U limsup, K”), we have Z = dirz for some z € limsup,°C” U
lim sup, K with z # 0. In case of z € limsup, K", we have

IN e NZ, 3y € K¥ (v € N):y"?x,
and hence,
ddiry” € dir K¥ (v € N):diry”Tdira:.

Therefore, z = dir z € limsup,, dir K”.
In the other case, we have

IN e NZ,3z” € C¥ (v € N),3N \0:)\”:10"7:1:.
By definition, we have
IN e NZ,Fz¥ € C” (v e N)::v"Tdirw,

and hence, we have Z = dirz € limsup, C".

(ii) Suppose Z € (liminf, C¥) Udir (liminf° C¥ Uliminf, KV).

If z € liminf, C¥, then it is clear that « € liminf, (CYUdir K"). Suppose z € dir (liminf)° CYU
lim inf,, K). Then, there exists z € liminf;° C¥ U lim inf, K” such that z = dir z.
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[Case: z € liminf)° C”.] We have

AN € Ny, 3z¥ € C¥ (I/EN),H)\V\,O:)\U.Z‘UT.’E,

and hence,
Jz¥ e C¥ (v € N):x"Tdirx.

Therefore, z = dir z € liminf, C”.
[Case: z € liminf, K”.] We have

aN e N,3z" € K" (VEN):m”Tw,

that is,
Adir z¥ € dir K¥ (v € N):dir 2 Tdir:v.

Hence, = dir z € liminf, dir K”.
(iii) Suppose K” = {0} for each v and let z € liminf, C¥. If z € R", then

AN € Ny, 3z¥ € C¥ (v € N)::B”?:E,
and hence, T € liminf, C. If Z € hzn R”, then for some z # 0 we have T = dir z and
AN € N, 32" € C¥ (v € N):m”?dirw,

and hence,
¥ € C¥ (v € N),3N \,O:)\”m”Tw.

Therefore, z € lim inf)° C¥. Then, we have z = dirz € dir liminf}° C¥. O



