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Abstract We prove the conjecture posed by A. Tamir [7] that any finite jump sys-
tem has a least weakly submajorized elements and a least weakly supermajorized
element.
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1. Definitions and Preliminaries

Majorization and weak majorization

Let us denote the set of reals by R. Let N = {1, 2, · · · , n}, where n is a positive
integer. For any x ∈ RN let the components x(i) (i ∈ N) of x are ordered as

x[1] ≥ x[2] ≥ · · · ≥ x[n]. (1.1)

For x, y ∈ RN if
j∑

i=1

x[i] ≤
j∑

i=1

y[i] (j = 1, · · · , n), (1.2)

we say x is weakly submajorized by y and denote it by x �w y. If we have x �w y

and
∑n

i=1 x[i] =
∑n

i=1 y[i], we say x is majorized by y and denote it by x � y. For
any x ∈ RN let the components x(i) (i ∈ N) of x are ordered as

x(1) ≤ x(2) ≤ · · · ≤ x(n). (1.3)
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For x, y ∈ RN if
j∑

i=1

x(i) ≥
j∑

i=1

y(i) (j = 1, · · · , n), (1.4)

we say x is weakly supermajorized by y and denote it by x �w y. Note that x � y

if and only if x �w y and x �w y.
The weak submajorization is characterized in terms of convex functions as follows

(see [6] for the proof and other characterizations).

Theorem 1.1: For any x, y ∈ RN x is weakly submajorized (respectively, superma-
jorized) by y if and only if for any continuous nondecreasing (respectively, nonin-
creasing) convex function h : R → R we have

∑n
i=1 h(x(i)) ≤

∑n
i=1 h(y(i)). ✷

For any nonempty subset S ⊆ RN an element x in S is called a least weakly
submajorized (supermajorized) element of S if x �w y (respectively, x �w y) holds
for each y ∈ S. From Theorem 1.1 we have the following characterization of the
least weakly sub- and supermajorization.

Corollary 1.2: For any nonempty subset S of RN x∗ is a least weakly submajorized
(respectively, supermajorized) element of S if and only if for any continuous nonde-
creasing (respectively, nonincreasing) convex function h : R → R x∗ is an optimal
solution for the problem min{

∑n
i=1 h(x(i)) | x ∈ S}. ✷

Jump Systems and Separable Convex Optimization

Define
St = {±χi | i ∈ N}, (1.5)

where χi : N → R is defined by χi(j) = 1 if j = i and χi(j) = 0 otherwise. Each
element in St is called a step. For x, y ∈ RN a step from x to y is a step s such that
we have

||(x+ s)− y||1 < ||x− y||1, (1.6)

where || · ||1 : R
N → R is defined by

||x||1 =
n∑

i=1

|x(i)|. (1.7)

The pair (N,J ) of N and a nonempty set J ⊆ ZN is called a jump system ([3])
on N if the set J satisfies the following two step axiom:

(2SA) For any x, y ∈ J and s ∈ St(x, y) such that x + s 6∈ J there exists a step
t ∈ St(x+ s, y) such that x+ s+ t ∈ J .

For a jump system (N,J ) on N let us consider the following optimization prob-
lem

Pg : min{g(x) | x ∈ J }, (1.8)
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where g(x) =
∑

i∈N gi(x(i)) and gi : R → R is a convex function for each i ∈ N . For
Problem Pg x ∈ J is called a local optimal solution if it satisfies the following two
condition:

(LO1) For any s ∈ St such that x+ s ∈ J we have g(x) ≤ g(x+ s).
(LO2) For any s, t ∈ St such that x+ s+ t ∈ J we have g(x) ≤ g(x+ s+ t).

The optimality condition for Problem Pg is characterized by the local optimality
conditions as the following theorem shows. A jump system (N,J ) on N is called
finite if J is a finite set.

Theorem 1.3 (Ando, Fujishige and Naitoh [2]): Suppose that (N,J ) is a finite jump
system on N . x ∈ J is an optimal solution for Pg if and only if x is a local optimal
solution. ✷

2. The Main Result

Theorem 2.1: Suppose that (N,J ) is a finite jump system on N . J has a least
weakly sub- and supermajorized element.
(Proof) We prove the existence of a least weakly submajorized element only since
the proof of the existence of a least weakly supermajorized element is similar.

We may assume without loss of generality that J ⊆ ZN
+ , where Z+ stands for the

set of nonnegative integers. Let x∗ be an optimal solution for Problem Pf , where the
associated objective function f : ZN → R is given by f(x) =

∑
i∈N (x(i))2. Then,

we must have
x∗ − χi 6∈ J (i ∈ N) (2.1)

and
x∗ − χi − χj 6∈ J (i, j ∈ N) (2.2)

since f is strictly increasing. For any two distinct i, j ∈ N if x∗ + χi − χj ∈ J we
have

0 ≤ f(x∗ + χi − χj)− f(x∗)

= (x∗(i) + 1)2 − x∗(i)2 + (x∗(j)− 1)2 − x∗(j)2

= 2x∗(i)− 2x∗(j) + 2. (2.3)

It follows that
x∗(j) ≤ x∗(i) + 1. (2.4)

Let h : R → R be given nondecreasing convex function and g : RN → R be
defined as g(x) =

∑
i∈N h(x(i)) (x ∈ RN). We will show that x∗ is also an optimal

solution for Problem Pg.
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Since h is nondecreasing, we have

g(x∗) ≤ g(x∗ + χi) (i ∈ N) (2.5)

and
g(x∗) ≤ g(x∗ + χi + χj) (i, j ∈ N). (2.6)

Also, it follows from (2.4) and the convexity of h that for two distinct i, j ∈ N

h(x∗(i) + 1)− h(x∗(i)) ≥ h(x∗(j))− h(x∗(j)− 1). (2.7)

Therefore, we have
g(x∗ + χi − χj) ≥ g(x∗). (2.8)

x∗ satisfies (LO1) since we have (2.1) and (2.5) and satisfies (LO2) since we have
(2.2), (2.6) and (2.8). That is, x∗ is a local optimal solution for Problem Pg and it
follows from Theorem 1.3 that is an optimal solution for Pg. However, since h is an
arbitrary nondecreasing convex function. It follows from Corollary 1.2 that x∗ is a
least weakly submajorized element of J . This completes the proof of the present
theorem. ✷

3. Concluding Remarks

We can find a least weakly sub- and supermajorized element in a finite jump sys-
tem by using an incremental algorithm [2]. The algorithm is designed for solving
separable convex programs and is not a polynomial time algorithm. In general, no
polynomial time algorithm is known for finding a least weakly sub- and superma-
jorized elements in a finite jump system. However, when J is the integral points of a
bisubmodular polyhedra [4] (see also [3], [1]), a least weakly sub- and supermajorized
elements can be found in polynomial time (see [5]).
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