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Abstract We prove the conjecture posed by A. Tamir [7] that any finite jump sys-
tem has a least weakly submajorized elements and a least weakly supermajorized
element.
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1. Definitions and Preliminaries

Majorization and weak majorization
Let us denote the set of reals by R. Let N = {1,2,--- n}, where n is a positive
integer. For any z € R" let the components x(i) (i € N) of x are ordered as

Ty = Tg) = 0 2 Ty (1.1)

For z,y € RV if

J J

i=1 i=1
we say x is weakly submajorized by y and denote it by x <, y. If we have x <, ¥
and Y77 T = Y1 Y, we say x is majorized by y and denote it by x < y. For
any x € RY let the components z(i) (i € N) of z are ordered as

Ty S Te) < S T (1.3)
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For z,y € RV if

J
=1

i=1
we say x is weakly supermajorized by y and denote it by x <" y. Note that z <y
if and only if x <, y and =z <" y.

The weak submajorization is characterized in terms of convex functions as follows
(see [6] for the proof and other characterizations).

Theorem 1.1: For any z,y € RY x is weakly submagjorized (respectively, superma-
jorized) by y if and only if for any continuous nondecreasing (respectively, nonin-
creasing) convex function h: R — R we have Y1 h(x(i)) < X0 h(y(i)). 0

For any nonempty subset S C R”Y an element z in S is called a least weakly
submagorized (supermajorized) element of S if x <, y (respectively, z <" y) holds
for each y € S. From Theorem 1.1 we have the following characterization of the
least weakly sub- and supermajorization.

Corollary 1.2: For any nonempty subset S of RN z* is a least weakly submajorized
(respectively, supermagjorized) element of S if and only if for any continuous nonde-
creasing (respectively, nonincreasing) convex function h: R — R x* is an optimal
solution for the problem min{}" | h(x(i)) | x € S}. O

Jump Systems and Separable Convex Optimization
Define
St ={£x;|i € N}, (1.5)

where x;: N — R is defined by x;(j) = 1 if j = i and x;(j) = 0 otherwise. Each
element in St is called a step. For z,y € RN a step from x to y is a step s such that
we have

(@ +5) = ylly <llz =yl (1.6)
where || - ||;: RV — R is defined by

el = S 1 ). (17)

The pair (N, J) of N and a nonempty set J C Z" is called a jump system ([3])
on N if the set J satisfies the following two step aziom:

(2SA) For any z,y € J and s € St(z,y) such that z + s € J there exists a step
t € St(x + s,y) such that x + s+t € J.

For a jump system (N, J) on N let us consider the following optimization prob-
lem

P,: min{g(z) |z € T}, (1.8)



where g(z) = Y ;en gi(2(i)) and ¢g;: R — R is a convex function for each i € N. For
Problem P, x € J is called a local optimal solution if it satisfies the following two
condition:

(LO1) For any s € St such that z + s € J we have g(z) < g(x + s).
(LO2) For any s,t € St such that = + s+t € J we have g(z) < g(z + s+ 1).

The optimality condition for Problem F; is characterized by the local optimality
conditions as the following theorem shows. A jump system (N, J) on N is called
finite if J is a finite set.

Theorem 1.3 (Ando, Fujishige and Naitoh [2]): Suppose that (N, T) is a finite jump
system on N. x € J is an optimal solution for P, if and only if x is a local optimal
solution. O

2. The Main Result

Theorem 2.1: Suppose that (N,J) is a finite jump system on N. J has a least
weakly sub- and supermajorized element.

(Proof) We prove the existence of a least weakly submajorized element only since
the proof of the existence of a least weakly supermajorized element is similar.

We may assume without loss of generality that J C ZY, where Z stands for the
set of nonnegative integers. Let 2* be an optimal solution for Problem Py, where the
associated objective function f: ZV — R is given by f(z) = S,en (z(i))>. Then,
we must have

©—xi ¢J (i€ N) (2.1)
and
= xi—x; €T (i,j EN) (2.2)

since f is strictly increasing. For any two distinct 4,5 € N if 2* + x; — x; € J we
have

0 < f(o"+xi—x5) — f(a¥)

(¢%(1) + 1)° = 2" ()" + (2" (j) = 1) = 2*(j)’
= 22*(i) — 22*(j) + 2.

x

) (2.3)
It follows that

z*(j) < x*(i) + 1. (2.4)

Let h: R — R be given nondecreasing convex function and g: R¥ — R be

defined as g(r) = Y;en h(2(i)) (z € RY). We will show that z* is also an optimal
solution for Problem F,.



Since h is nondecreasing, we have

g9(z") < g(z" +xi) (i€ N) (2:5)
and
g(a) < g(@" +xi+x;) (3,5 € N). (2:6)
Also, it follows from (2.4) and the convexity of h that for two distinct 7,7 € N
h(a* (i) +1) = h(z" () = h(z"(j)) — h(z"(j) — 1). (2.7)
Therefore, we have
g9(z" +xi — xj) = g(a"). (2.8)

x* satisfies (LO1) since we have (2.1) and (2.5) and satisfies (LO2) since we have
(2.2), (2.6) and (2.8). That is, z* is a local optimal solution for Problem P, and it
follows from Theorem 1.3 that is an optimal solution for P,. However, since h is an
arbitrary nondecreasing convex function. It follows from Corollary 1.2 that z* is a
least weakly submajorized element of . This completes the proof of the present
theorem. O

3. Concluding Remarks

We can find a least weakly sub- and supermajorized element in a finite jump sys-
tem by using an incremental algorithm [2]. The algorithm is designed for solving
separable convex programs and is not a polynomial time algorithm. In general, no
polynomial time algorithm is known for finding a least weakly sub- and superma-
jorized elements in a finite jump system. However, when J is the integral points of a
bisubmodular polyhedra [4] (see also [3], [1]), a least weakly sub- and supermajorized
elements can be found in polynomial time (see [5]).
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