Extreme Point Axioms for Closure Spaces

Kazutoshi Ando Department of Systems Engineering Shizuoka University

2003.1.21

Koshevoy's Theorem

only if S satisfies is the extreme point operator of an antimatroid if and Theorem 1 (Koshevoy (1999)): A mapping $S: 2^X \to 2^X$

(Ex1)
$$S(A) \subseteq A \quad (A \subseteq X)$$
.

(Intensionality)

(NE)
$$S(A) \neq \emptyset$$
 ($\emptyset \neq A \subseteq X$). (Nonemptiness)

(PI)
$$\forall A, B \subseteq X : S(A \cup B) = S(S(A) \cup S(B)).$$
 (path-independence)

Results

closure spaces Characterization of the extreme point operators of

Characterization of the extreme point operators of matroids

New axiom systems for closure spaces and matroids

Closure Spaces

X finite set. Closure operator $\tau: 2^X \to 2^X$, i.e.,

(C1)
$$\forall A \subseteq X : A \subseteq \tau(A)$$
.

 $(\mathsf{Extensionality})$

(C2)
$$\forall A, B \subseteq X : A \subseteq B \Longrightarrow \tau(A) \subseteq \tau(B)$$
. (Monotonicity)

(C3)
$$\forall A \subseteq X : \tau(\tau(A)) = \tau(A)$$
.

(Idempotence)

We call (X, τ) a closure space.

Cryptomorphism

(i) Moore families

(ii) Complete Implicational Systems ([Armstrong])

(iii) Finite lattices

(iv) Overhanging relations [Domenach and Leclerc (2002)]

Moore Families

A family $\mathcal{L} \subseteq 2^X$ is called a Moore family if

(A1)
$$X \in \mathcal{L}$$
,

(A2)
$$A, B \in \mathcal{L} \Longrightarrow A \cap B \in \mathcal{L}$$
.

 ${\mathcal L}$ ordered by inclusion \subseteq forms a lattice

Every finite lattice is isomorphic to a Moore family.

Moore Families ⇔ Closure Spaces

For a closure space (X,τ) , $\mathcal{L}\subseteq 2^X$ defined by

$$\mathcal{L} = \{ A \mid A \in 2^X, \tau(A) = A \}.$$

is a Moore family. We call a member in $\mathcal L$ closed.

Given a Moore family $\mathcal{L}\subseteq 2^X$, $au_{\mathcal{L}}\colon 2^X o 2^X$ defined by

$$\tau_{\mathcal{L}}(A) = \bigcap \{C \mid A \subseteq C \in \mathcal{L}\} \quad (A \subseteq X).$$

given by \mathcal{L} . is a closure operator. The closed subsets of $(X, \tau_{\mathcal{L}})$ are

Subclasses of Closure Spaces

Closure space (X, τ) is a matroid if

$$(\mathsf{EA}) \ \forall A \subseteq X, \forall p, q \not\in \tau(A) : q \in \tau(A \cup p) \Longrightarrow p \in \tau(A \cup q).$$

$$(\mathsf{Steinitz\text{-}MacLane} \ \mathsf{Exchange} \ \mathsf{Axiom})$$

ometry) if Closure space (X, τ) is an **antimatroid** (or convex ge-

(C0)
$$\tau(\emptyset) = \emptyset$$
.

(AE)
$$\forall A \subseteq X, \forall p, q \notin \tau(A)$$
 with $p \neq q$:
 $q \in \tau(A \cup p) \Longrightarrow p \notin \tau(A \cup q)$.

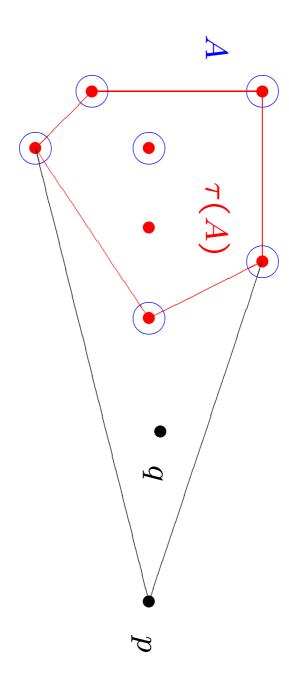
(Antiexchange Axiom)

Example of antimatroid 1 - convex shelling -

For a finite set $X \subseteq \mathbf{R}^n$, define $\tau: 2^X \to 2^X$ by

$$\tau(A) = \text{conv.hull}(A) \cap X \quad (A \subseteq X).$$

Then, (X, τ) is an antimatroid.

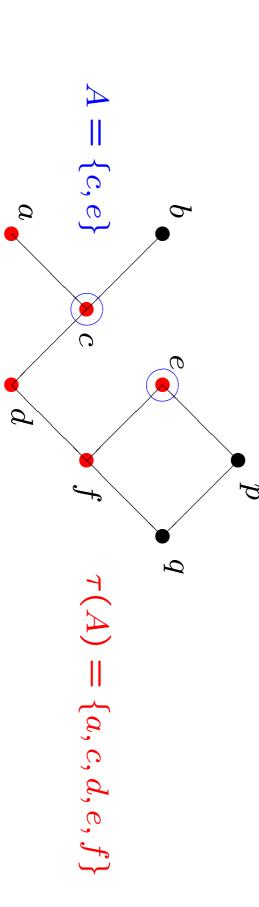


Example of antimatroid 2 - poset shelling

For a finite poset $P=(X,\preceq)$, define $\tau:2^X\to 2^X$ by

$$\tau(A) = \{x | x \in X, \exists a \in A : x \leq a\} = (\text{the ideal generated by } A)$$

Then (X, τ) is an antimatroid.



Extreme point operator ex

Let (X, τ) be a closure space. Define $\operatorname{ex}: 2^X \to 2^X$ by

$$ex(A) = \{ p \mid p \in A, p \notin \tau(A - p) \} \quad (A \subseteq X).$$

ex(A) is an extreme point of A. We call ex the extreme point operator of (X, τ) . $p \in$

Example:

- If (X, τ) is a matroid, ex(A) = the isthmuses of A.
- For a convex shelling (X, τ) , ex(A) = the extreme points of $conv(A) \subseteq \mathbf{R}^X$.
- For a poset shelling (X,τ) , $\operatorname{ex}(A)=\operatorname{the}$ maximal elements in A.

We may have $ex(A) = \emptyset$ for $A \neq \emptyset$.

Properties of Extreme Point Operators

ex: $2^X \rightarrow 2^X$ satisfies the following (Ex1)-(Ex3). **Proposition 2**: Let (X,τ) be a closure space.

$$(\mathsf{Ex1}) \ \forall A \subseteq X \colon \mathsf{ex}(A) \subseteq A.$$

(Intensionality)

(Ex2)
$$A \subseteq B \subseteq X \Longrightarrow ex(B) \cap A \subseteq ex(A)$$
.

(Chernoff property)

(Ex3)
$$\forall A \subseteq X, \forall p, q \notin A$$
:

$$(p \notin ex(A \cup p), q \in ex(A \cup q)) \Longrightarrow q \in ex(A \cup p \cup q).$$

(Proof)

 $(\mathsf{Ex1}) \ \forall A \subseteq X \colon \mathsf{ex}(A) \subseteq A \text{ is clear.}$

 $\tau(B-p)$, we have $p \notin \tau(A-p)$. Hence $p \in ex(A)$. Let $p \in ex(B) \cap A$. Then, $p \notin \tau(B-p)$. Since $\tau(A-p) \subseteq$ (Ex2) $A \subseteq B \subseteq X \Longrightarrow ex(B) \cap A \subseteq ex(A)$.

(Ex3) $\forall A \subseteq X, \forall p, q \notin A$:

 $(p \notin ex(A \cup p), q \in ex(A \cup q)) \Longrightarrow q \in ex(A \cup p \cup q).$

 $(\mathsf{LHS}) \implies p \in \tau(A), q \notin \tau(A)$ $\implies \tau(A \cup p) = \tau(A) \not\ni q$

 $p \in \operatorname{ex}(A \cup p \cup q).$

Axiom System by Extreme Point Operator

point operator of a closure space if and only if it satisfies **Theorem 3** (A): A mapping $S: 2^X \to 2^X$ is the extreme

$$(\mathsf{E} \times 1) \ \forall A \subseteq X \colon S(A) \subseteq A.$$

(Intensionality)

(Ex2)
$$A \subseteq B \subseteq X \Longrightarrow S(B) \cap A \subseteq S(A)$$
.

(Chernoff property)

(Ex3)
$$\forall A \subseteq X, \forall p, q \notin A$$
:

$$(p \notin S(A \cup p), q \in S(A \cup q)) \Longrightarrow q \in S(A \cup p \cup q). \square$$

Theorem 4: Suppose that $S: 2^X \to 2^X$ satisfies $(E \times 1)$ -

(Ex3). Define $\tau: 2^X \to 2^X$ by

$$\tau_S(A) = A \cup \{ p \mid p \notin A, p \notin S(A \cup p) \}. \tag{1}$$

operator being S. \square Then, (X, au_S) is a closure space with its extreme point

Axiom System for Matroids

point operator of a matroid if and only if it satisfies $(Ex1)\sim(Ex3)$ and **Theorem 5** (A): A mapping $S: 2^X \to 2^X$ is the extreme

$$(\mathsf{E}\mathsf{x}\mathsf{4}) \ \forall A\subseteq X, \forall p\in X \colon p\in S(A\cup p)\Rightarrow S(A\cup p)\supseteq S(A)\cup p.$$

Axiom System for Antimatroids

operator of an antimatroid if and only if it satisfies **Theorem 6**: A mapping $S: 2^X \rightarrow 2^X$ is the extreme point

$$(E\times 0) \ \forall p \in X : S(\{p\}) = \{p\},\$$

$$(\mathsf{E} \times 1) \ \forall A \subseteq X \colon S(A) \subseteq A,$$

(Ex2)
$$A \subseteq B \subseteq X \Rightarrow S(B) \cap A \subseteq S(A)$$
, and

(Ex5)
$$\forall A, B \subseteq X : S(B) \subseteq A \subseteq B \Rightarrow S(A) \subseteq S(B)$$
. (Aizerman's Axiom) \square

Concluding Remarks

Characterization of independence families of closure

spaces (or antimatroid),

(where $A \subseteq X$ is independent $\Leftrightarrow \operatorname{ex}(A) = A$.)

We may obtain general result replacing path-independent

choice functions with functions satisfying conditions

 $(E\times1)$ - $(E\times3)$.