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Outline Cost games

•An n-person cooperative game is a pair (N,C) 
of set N={1,2,…,n} of players (or agents, 
users) and a function   with RC N →2:

and0)( =φC
.for )()( NTSTCSC ⊆⊆≤

•For S⊆N a game (S,CS) is called subgame
induced by S, where is the 
restriction of C to 2S :

).(   )()( STTCTC S ⊆=

RC S
S →2:
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•The core of a game (N,C) is 
defined by

)(core C

where                              for each T⊆N.∑
∈

=
Ti

ixTx )(

Submodular functions

•A function                          is submodular if for 
each S,T⊆N

).()()()( TSCTSCTCSC ∩+∪≥+

RC N →2:

•A game               is concave if is 
submodular.

),( CN C

Example 1: MCST games*
[Claus-Kleitman ’73]

.: +→ REl
•Let                            and G=(N’,E) be the 
complete graph with length function  

}0{' ∪= NN

Remark: The cost function C is not necessarily 
submodular but is permutationally submodular. 
[Granot-Huberman ’82]

}]0{[ ∪SG G

•Define                            by

where                      is the subgraph of 
induced by 

RC N →2:
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Permutational submodularity

•A function                          is permutationally
submodular if there exists a permutation π of 
N such that for each and 

).()()()( ππππ
jkkj SCTSCSCTSC +∪≥+∪

RC N →2:

•For a permutationπ of N define

where
),,,1(    },,,{ 21 njiiiS jj LL ==π

).()()( 21 niii πππ <<< L

π
kSNT −⊆kj <

Remark: If C is permutationally submodular, then 
(N,C) has a nonempty core. [Granot-Huberman ’82]

Example 2: Fixed tree multicast 
routing [Feigenbaum et al. ‘01]

i

0
.: +→ REl

),( EVT =•Let                       be a tree rooted 
at 0 with length function being

}.0{−⊆ VN•We assume

•For each              let             
be the set of edges in the 
unique path from i to 0.

Ni ∈ )( iT

Example 2: Fixed tree multicast 
routing (cnt’d)

0
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•For each S⊆N define C(S) 
by

S
Remark: The function

is 
submodular.

RC N →2:
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Outline Cost sharing method
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Given a cost game                 a mapping),( CN

is called a cost sharing method for  if 
for each NS ⊆

),( CN

Cross-monotonicity

).()( TSTSi ii ξξ ≥⇒⊆∈

Remark:  If ξ is a cross-monotonic csm, then 
ξ (S)∈Core(CS) and so (N,C) is totally 
balanced, i.e., the core of each subgame of 
(N,C) is nonempty.The converse if not true 
when n≧4. [Sprumont ’90]

A cost sharing method ξ is called cross-
monotonic if

Marginal contribution vector

},,,{ 1 kiiS L=

•Let π be a permutation of N. For S⊆N let

where

•Define                by 

for 

).()( 1 kii ππ << L

}),,({}),,({)( 111 −−= jji iiCiiCS
j
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The csm is cross-monotonic if C is 
submodular. [cf. Sprumont ’90] 

πξ

.,,1 kj L=

Shapley value

)(      )(
!

1)(* NSS
n

S ⊆= ∑
π

πξξ

*ξThe csm defined by 

is called the Shapley value, where the sum is  
over all the permutations of N.

The Shapley value           is cross-monotonic if 
C is submodular. [cf. Sprumont ’90] 

*ξ

Fujishige-Dutta-Ray solution
(Egalitarian solution)

If C is submodular, the Fujishige-Dutta-Ray
solution is cross-monotonic. [Dutta ’90]
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Cross-monotonic csm for MCST 
games

Bird rule is NOT a cross-monotonic csm but

Theorem [Norde et al. ’04]: Every MCST game 
has a cross-monotonic csm. 

Summary of this section
balanced

totally balanced
games having cross-
monotonic csm

concave 
(submodular)

permutationally
submodular
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Outline Problem Setting

N: the set of agents (or players, users).

•The provider must decide which agent 
receive the service, and how much they are 
charged.

•Each agent i∈N report her 
willingness to pay, which may not be true, for 
the service.

,0≥iu

•A service provider is about to provide a 
service to a subset of  

•The cost for the provider to give the service to 
each S⊆N is given by                         . RC N →2:

Cost sharing mechanism

NuQ 2)( ∈ (the set of agents who are served),
NRux ∈)( (the charge each agent must pay).

NNN RRM ×→+ 2:
NRu +∈

A cost sharing mechanism is a mapping

associating to each profile                  of 
willingness to pay, a pair                       , where))(),(( uxuQ

Individual welfare*

),()()( uxuuquw iiii −=

NRuq ∈)(

Agent i’s individual welfare is defined 
by


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=
otherwise.0
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where                         is defined as
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Strategy-proofness

• Strategy-proofness: A mechanism M is 
strategy-proof if

. and , , allfor 
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• For                                                        define++ ∈∈∈ Ru'NiRu N  and ,

Group strategy-proofness
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=− otherwise.
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• For                                                         defineSN Ru'NSRu ++ ∈⊆∈  and ,

•Group strategy-proofness: A mechanish M is 
group strategy-proof if
for all

implies equality in the above for each i∈S. 
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Requirements of a mechanism*
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such that  ,
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•(Group) strategy-proofness
•No Positive Transfer (NPT): 

• Voluntary Participation (VP): for all i and for 
all

•Customer Sovereignty (CS):

. and  allfor 0)( iuux i 　≥

.0)()( ≥− uxuuq iii

NRu +∈

Requirements of a mechanism 
(cnt’d)

•Budget-balance:

• Efficiency:

. allfor  ))(()(
)(

N
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−

Remark: There is no strategy-proof 
mechanism that is both budget-balanced and 
efficient. [Green-Laffont ’79]
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Outline Mechanism M(ξ)

Let                                   be a cross-monotonic 
cost sharing method, the cost sharing 
mechanism is defined by the 
following procedure.

+→× RNN2:ξ

)(ξM

1. .: NQ =
)(Qu ii ξ<Qi ∈

Qi
2. While there exists such that 

delete    from .
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Moulin-Shenker Theorem

Theorem [Moulin et al. ‘01]: 
(i) For any cross-monotonic cost sharing 
method ξ, the mechanism M(ξ) is budged-
balanced, meets NTP, VP and CS and is group 
strategy-proof．
(ii) Conversely, for any mechanism M satisfying 
budged-balance, NTP, VP, CS and group 
strategy-proofness, there exists a cross-
monotonic cost sharing method ξ such that 
M(ξ) is welfare equivalent to M.

Welfare equivalence

NiRu N ∈∈ +  and 
Two mechanism M and M’ are welfare 
equivalent if for all 

),()()()( ux'uuq'uxuuq iiiiii −=−

where
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Maximum efficiency loss
•Let

and define
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•The maximum efficiency loss of the 
mechanism ξ is defined as

)(ξγ

}|)()(max{),( NTTCTuuNw ⊆−=

Maximum efficiency loss

Theorem [Moulin et al. ‘01]: The Shapley
value mechanism                  is the unique    
minimizer of γ among all the mechanisms 
derived from cross monotonic cost sharing 
methods.

)( *ξM
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Outline Efficient sets
• A subset               is called efficient ifNS ⊆

}.|)()(max{             
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• The efficient sets are closed under ∪ and ∩, 
and so, there exists the largest efficient set 

.)(* uQ
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MC mechanism
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•Define

•The marginal cost pricing mechanism (MC 
mechanism) picks the coalition and 
cost share defined as)(* ux

)(* uQ

MC mechanism

Theorem [Moulin et al. ‘01]: 
(i) The MC mechanism meets NPT, VP and 

CS and is strategyproof.
(ii) Conversely, any strategy-proof and  

efficient mechanism meeting NPT, VP and 
CS is welfare equivalent to MC.

Remark: The MC mechanism is not group 
strategy-proof.
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Outline Concluding remarks

•Does Fujishige-Dutta-Ray mechanism have 
a nice characterization as Shapley value 
mechanism? (Partially answered by 
[Mutuswami ‘97].)
•Algorithms to implement a mechanism for 
combinatorial games.  (Algorithm 
implementing MC mechanism [Feigenbaum
et al. ’01] is given for multicast routing.)


