配分メカニズム ・ Cost games ・ Cost sharing methods ・ Cost sharing mechanisms ・ Concluding remarks 	劣モジュラ費用の	Outline
 Particular Concluding mechanisms Cost sharing mechanisms Concluding remarks 		Cost sharing methodsCost sharing mechanisms
2006 09 22		
	2006.09.22	

References

• A. Claus and D. J. Kleitman: Cost allocation for a spanning tree. *Networks* **3** (1973) 289--304.

• B. Dutta: The egalitarian solution and reduced game properties in convex games. *Internat. J. Game Theory* **19** (1990) 153--169.

• B. Dutta and D. Ray: A concept of egalitarianism under participation constraints. *Econometrica* **57** (1989) 615-635.

• J. Feigenbaum, C. H. Papadimitriou and S. Shenker: Sharing the cost of multicast transmissions. *J. Comput. System Sci.* 63 (2001) 21-41.

• D. Granot and G. Huberman: The relationship between convex games and minimum cost spanning tree games: A case for permutationally convex games. *SIAM J. Alg. Disc. Meth.* **3** (1982) 288-292.

References

• J. Green and J. J. Laffont: Incentives in public decision making. In: *Studies in Public Economics*, Vol. 1 (North-Holland, 1979).

• H. Moulin and S. Shenker: Strategyproof sharing of submodular costs: budget balance versus efficiency. *Economic Theory* **18** (2001) 511-533.

S. Mutuswami: Strategyproof mechanisms for cost sharing. Working paper, Indial Statistical Institute, 1997.
H. Norde, S. Moretti and S. Tijs: Minimum cost spanning tree games and population monotonic allocation schemes. *European J. Oper. Res.* **154** (2004) 84--97.

• Y. Sprumont: Population monotonic allocation schemes for cooperative games with transferable utility. *Games Econom. Behav.* **2** (1990) 378--394.

Outline

- Cost games
- · Cost sharing methods
- Cost sharing mechanisms
- Concluding remarks

Cost games

•An *n*-person cooperative game is a pair (*N*,*C*) of set $N=\{1,2,...,n\}$ of players (or agents, users) and a function $C: 2^N \rightarrow R$ with

 $C(\phi) = 0$ and

 $C\left(\,S\,\right)\,\leq\,C\left(\,T\,\,\right)\,\,\text{for }\ S\,\,\subseteq\,\,T\,\,\subseteq\,\,N\,\,.$

•For *S N* a game (*S*,*C*_{*S*}) is called subgame induced by *S*, where $C_s : 2^S \rightarrow R$ is the restriction of *C* to 2^S :

$$C_{S}(T) = C(T) \quad (T \subseteq S).$$

Core

•The core core (*C*) of a game (*N*,*C*) is defined by core (*C*) $= \{ x \in R^{N} \mid \forall T \subseteq N : x(T) \leq C(T), x(N) = C(N) \},$ where $x(T) = \sum_{i \in T} x_i$ for each *T N*.

Submodular functions

•A function $C : 2^N \rightarrow R$ is submodular if for each $S, T \rightarrow R$ is submodular if for each $S, T \rightarrow R$ is submodular if for $C(S) + C(T) \ge C(S \cup T) + C(S \cap T)$.

•A game (N, C) is concave if C is submodular.

Example 1: MCST games* [Claus-Kleitman '73]

•Let $N = N \cup \{0\}$ and G = (N', E) be the complete graph with length function $l : E \rightarrow R_+$. •Define $C : 2^N \rightarrow R$ by C(S)= min{ c(T) | T is a spanning tree of $G[S \cup \{0\}]$ }, where $G[S \cup \{0\}]$ is the subgraph of Ginduced by $S \cup \{0\} \subseteq N'$. Remark: The cost function C is not necessarily submodular but is permutationally submodular. [Granot-Huberman '82]

Permutational submodularity

•For a permutation of N define

 $S_{j}^{\pi} = \{i_{1}, i_{2}, \cdots, i_{j}\} \quad (j = 1, \cdots, n),$

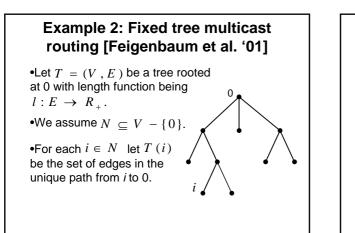
where

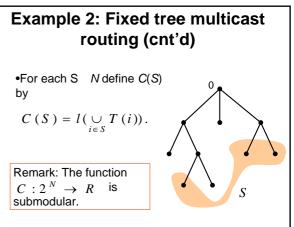
$$\pi(i_1) < \pi(i_2) < \cdots < \pi(i_n).$$

•A function $C : 2^N \rightarrow R$ is permutationally submodular if there exists a permutation of N such that for each j < k and $T \subseteq N - S_k^{\pi}$

 $C(S_{i}^{\pi} \cup T) + C(S_{k}^{\pi}) \geq C(S_{k}^{\pi} \cup T) + C(S_{i}^{\pi}).$

Remark: If C is permutationally submodular, then (N,C) has a nonempty core. [Granot-Huberman '82]





Outline

- Cost games
- Cost sharing methods
- Cost sharing mechanisms
- Concluding remarks

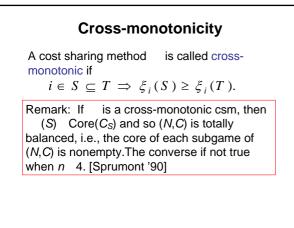
Cost sharing method

Given a cost game (N, C) a mapping

$$\xi: 2^N \times N \to R_+$$

is called a cost sharing method for (N , C) if for each $S \subseteq N$

$$\begin{split} &\sum_{i \in S} \xi_i(S) = C(S), \\ &\xi_i(S) = 0 \quad \forall i \notin S \end{split}$$



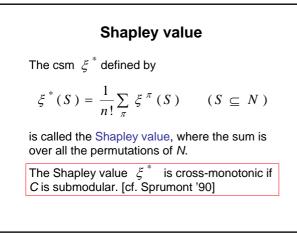
Marginal contribution vector

•Let be a permutation of *N*. For *S N* let

 $S \ = \ \{ \ i_1 \ , \cdots \ , \ i_k \ \},$ where $\ \pi \ (i_1) < \cdots < \pi \ (i_k).$

•Define $\xi^{\pi}(S)$ by $\xi_{i_j}^{\pi}(S) = C(\{i_1, \cdots, i_j\}) - C(\{i_1, \cdots, i_{j-1}\})$ for $j = 1, \cdots, k$.

The csm ξ^{π} is cross-monotonic if *C* is submodular. [cf. Sprumont '90]



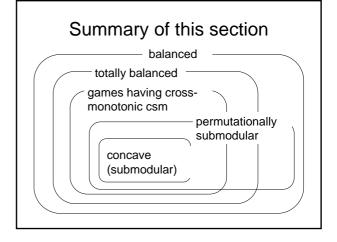
Fujishige-Dutta-Ray solution (Egalitarian solution)

If *C* is submodular, the Fujishige-Dutta-Ray solution is cross-monotonic. [Dutta '90]

Cross-monotonic csm for MCST games

Bird rule is NOT a cross-monotonic csm but

Theorem [Norde et al. '04]: Every MCST game has a cross-monotonic csm.



Outline

- Cost games
- Cost sharing methods
- Cost sharing mechanisms
- Concluding remarks

Problem Setting

•A service provider is about to provide a service to a subset of

N: the set of agents (or players, users).

•The cost for the provider to give the service to each *S N* is given by $C : 2^N \rightarrow R$.

•Each agent *i* N report $u_i \ge 0$, her willingness to pay, which may not be true, for the service.

•The provider must decide which agent receive the service, and how much they are charged.

Cost sharing mechanism

A cost sharing mechanism is a mapping

 $M : R_{+}^{N} \rightarrow 2^{N} \times R^{N}$

associating to each profile $u \in R^N_+$ of willingness to pay, a pair (Q(u), x(u)), where

 $Q(u) \in 2^{N}$ (the set of agents who are served),

 $x(u) \in \mathbb{R}^{N}$ (the charge each agent must pay).

Individual welfare*

Agent *i*'s individual welfare $w_i(u)$ is defined by

$$w_i(u) = q_i(u)u_i - x_i(u),$$

where $q(u) \in R^N$ is defined as

$$q_{i}(u) = \begin{cases} 1 & \text{if } i \in Q(u), \\ 0 & \text{otherwise.} \end{cases}$$

Strategy-proofness

• For $u \in R_{+}^{N}$, $i \in N$ and $u' \in R_{+}$ define $(u', u_{-i})_{j} = \begin{cases} u' & \text{if } j = i, \\ u_{j} & \text{otherwise.} \end{cases}$ • Strategy-proofness: A mechanism Mis

• Strategy-proofness: A mechanism *M* is strategy-proof if

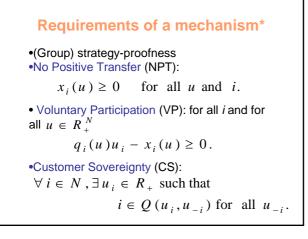
$$q_{i}(u)u_{i} - x_{i}(u) \\ \geq q_{i}(u', u_{-i})u_{i} - x_{i}(u', u_{-i})$$

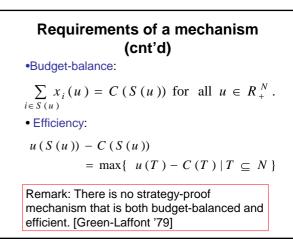
for all $u \in R_+^N$, $i \in N$, and $u' \in R_+$.

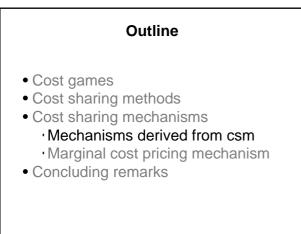
Group strategy-proofness

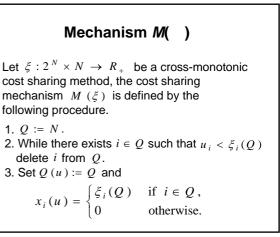
• For $u \in R_+^N$, $S \subseteq N$ and $u' \in R_+^S$ define $(u', u_{-S})_j = \begin{cases} u'_j & \text{if } j \in S, \\ u_j & \text{otherwise.} \end{cases}$ • Group strategy-proof if

for all $u \in R_+^N$, $S \subseteq N$, and $u' \in R_+^S$, $\forall i \in S : q_i(u)u_i - x_i(u)$ $\leq q_i(u', u_{-S})u_i - x_i(u', u_{-S})$ implies equality in the above for each i S.







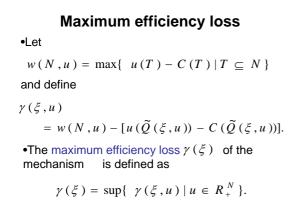


Moulin-Shenker Theorem

Theorem [Moulin et al. '01]: (i) For any cross-monotonic cost sharing method , the mechanism M() is budgedbalanced, meets NTP, VP and CS and is group strategy-proof. (ii) Conversely, for any mechanism M satisfying budged-balance, NTP, VP, CS and group strategy-proofness, there exists a crossmonotonic cost sharing method such that M() is welfare equivalent to M.

Welfare equivalence

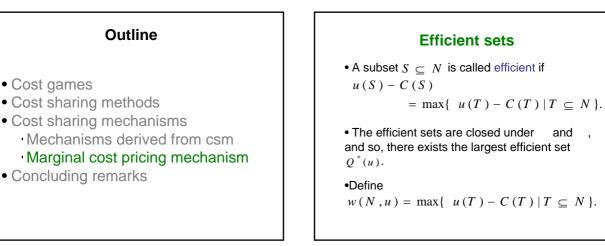
Two mechanism *M* and *M*' are welfare equivalent if for all $u \in R^{N}_{+}$ and $i \in N$ $q_{i}(u)u_{i} - x_{i}(u) = q'_{i}(u)u_{i} - x'_{i}(u),$ where $M: u \mapsto (q(u), x(u))$ and $M' : u \mapsto (q'(u), x'(u)).$



Maximum efficiency loss

Theorem [Moulin et al. '01]: The Shapley value mechanism $M(\xi^*)$ is the unique minimizer of among all the mechanisms derived from cross monotonic cost sharing methods.

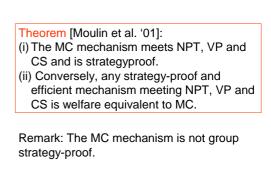
and



MC mechanism

•Define $w(N - i, u) = \max\{ u(T) - C(T) | T \subseteq N - i\}.$ •The marginal cost pricing mechanism (MC mechanism) picks the coalition $Q^*(u)$ and cost share $x^*(u)$ defined as $x_i^*(u) = u_i q_i^*(u) - (w(N, u) - w(N - i, u)).$

MC mechanism



Outline

- Cost games
- Cost sharing methods
- Cost sharing mechanisms
- Concluding remarks

Concluding remarks

Does Fujishige-Dutta-Ray mechanism have a nice characterization as Shapley value mechanism? (Partially answered by [Mutuswami '97].)
Algorithms to implement a mechanism for combinatorial games. (Algorithm implementing MC mechanism [Feigenbaum et al. '01] is given for multicast routing.)